16 research outputs found

    Asymmetrical Landing Forces Detect Neuromuscular Fatigue

    Get PDF
    Neuromuscular fatigue decreases performance and increases injury risk, but practitioners lack an easy, reliable method for detecting fatigue. This study determined if ground reaction forces are impacted by neuromuscular fatigue and whether this differed between limbs. Thirty-one female athletes (19.1 ± 1.22 years, 1.7 ± 0.6 m and 63.0 ± 7.7 kg) participated. Each participant had vertical ground reaction force (vGRF) recorded during five trials of a forward jump task immediately prior to and following a competitive soccer season. During each trial, peak vGRF during landing for both dominant and non-dominant limbs and asymmetry of peak vGRF between limbs were calculated. These measures were submitted to a RM ANOVA to test the main effect and interaction between time (pre vs. post) and fatigue (starter vs. non-starter). A significant two-way interaction for dominant limb peak vGRF (p=0.034) was observed. Starters increased peak vGRF (p=0.049) at post compared to pre time point, but no difference was evident for non-starters (p=0.333). Asymmetry of vGRF (p=0.033) between limbs decreased at the post-season time point, but asymmetry did not differ between starters and non-starters (p=0.360). Ground reaction force data may be an easy, reliable for detecting neuromuscular fatigue

    The Method for Assigning Priority Levels (MAPLe): A new decision-support system for allocating home care resources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Home care plays a vital role in many health care systems, but there is evidence that appropriate targeting strategies must be used to allocate limited home care resources effectively. The aim of the present study was to develop and validate a methodology for prioritizing access to community and facility-based services for home care clients.</p> <p>Methods</p> <p>Canadian and international data based on the Resident Assessment Instrument – Home Care (RAI-HC) were analyzed to identify predictors for nursing home placement, caregiver distress and for being rated as requiring alternative placement to improve outlook.</p> <p>Results</p> <p>The Method for Assigning Priority Levels (MAPLe) algorithm was a strong predictor of all three outcomes in the derivation sample. The algorithm was validated with additional data from five other countries, three other provinces, and an Ontario sample obtained after the use of the RAI-HC was mandated.</p> <p>Conclusion</p> <p>The MAPLe algorithm provides a psychometrically sound decision-support tool that may be used to inform choices related to allocation of home care resources and prioritization of clients needing community or facility-based services.</p

    An experimental study on the impact of clinical interruptions on simulated trainee performances of central venous catheterization

    Get PDF
    Background: Interruptions are common in the healthcare setting. This experimental study compares the effects of interruptions on simulated performances of central venous catheterization during a highly versus minimally complex portion of the task. Methods: Twenty-six residents were assigned to interruptions during tasks that are (1) highly complex: establishing ultrasound-guided venous access (experimental group, n = 15) or (2) minimally complex: skin cleansing (control group, n = 11). Primary outcomes were (a) performance scores at three time points measured with a validated checklist, (b) time spent on the respective tasks, and (c) number of attempts to establish venous access. Results: Repeated measure analyses of variances of performance scores over time indicated no main effect of time or group. The interaction between time and group was significant: F (2, 44) = 4.28, p = 0.02, and partial eta2 = 0.16, indicating a large effect size. The experimental group scores decreased steadily over time, while the control group scores increased with time. The experimental group required longer to access the vein (148 s; interquartile range (IQR) 60 to 361 vs. 44 s; IQR 27 to 133 s; p = 0.034). Median number of attempts to establish venous access was higher in the experimental group (2, IQR 1–7 vs. 1, IQR 1–2; p = 0.03). Conclusions: Interruptions during a highly complex task resulted in a consistent decrement in performance scores, longer time required to perform the task, and a higher number of venous access attempts than interruptions during a minimally complex tasks. We recommend avoiding interrupting trainees performing bedside procedures.Law, Peter A. Allard School ofNon UBCReviewedFacult

    Extreme drought impacts have been underestimated in grasslands and shrublands globally.

    Get PDF
    Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought

    Unraveling the functional dark matter through global metagenomics

    No full text
    Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter
    corecore