8 research outputs found

    Coexistent ARID1A–PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling

    Get PDF
    Ovarian clear-cell carcinoma (OCCC) is an aggressive form of ovarian cancer with high ARID1A mutation rates. Here we present a mutant mouse model of OCCC. We find that ARID1A inactivation is not sufficient for tumor formation, but requires concurrent activation of the phosphoinositide 3-kinase catalytic subunit, PIK3CA. Remarkably, the mice develop highly penetrant tumors with OCCC-like histopathology, culminating in hemorrhagic ascites and a median survival period of 7.5 weeks. Therapeutic treatment with the pan-PI3K inhibitor, BKM120, prolongs mouse survival by inhibiting tumor cell growth. Cross-species gene expression comparisons support a role for IL-6 inflammatory cytokine signaling in OCCC pathogenesis. We further show that ARID1A and PIK3CA mutations cooperate to promote tumor growth through sustained IL-6 overproduction. Our findings establish an epistatic relationship between SWI/SNF chromatin remodeling and PI3K pathway mutations in OCCC and demonstrate that these pathways converge on pro-tumorigenic cytokine signaling. We propose that ARID1A protects against inflammation-driven tumorigenesis

    All Our Names Were Freedom: Agency, Resiliency, and Community in Yalobusha County

    No full text
    During the fall semester, five students in SST 560, Oral History of Southern Social Movements, taught by Jessie Wilkerson, collaborated with Dottie Chapman Reed to develop the Black Families of Yalobusha County Oral History Project. Reed, who lives in Atlanta, is a member of the University of Mississippi Class of ’74, grew up in Water Valley, and writes the column “Outstanding Black Women of Yalobusha County” for the North Mississippi Herald. In this SouthTalk, the students of SST 560 will present a multivocal, multilayered history based on interviews from their oral history project. Dottie Chapman Reed will speak during the Summit on Women and Civic Engagement sponsored by the Sarah Isom Center for Women and Gender Studies earlier that day

    'A World of Steel-Eyed Death': An Empirical Evaluation of the Failure of the Strickland Standard to Ensure Adequate Counsel to Defendants with Mental Disabilities Facing the Death Penalty

    No full text

    Comprehensive molecular characterization of urothelial bladder carcinoma

    No full text
    Urothelial carcinoma of the bladder is a common malignancy that causes approximately 150,000 deaths per year worldwide. So far, no molecularly targeted agents have been approved for treatment of the disease. As part of The Cancer Genome Atlas project, we report here an integrated analysis of 131 urothelial carcinomasto provide a comprehensive landscape of molecular alterations. There were statistically significant recurrent mutations in 32 genes, including multiple genes involved in cell-cycle regulation, chromatin regulation, and kinase signalling pathways, as well as 9 genes not previously reported as significantly mutated in any cancer. RNA sequencing revealed four expression subtypes, two of which (papillary-like and basal/squamous-like) were also evident in microRNA sequencing and protein data. Whole-genome and RNA sequencing identified recurrent in-frame activating FGFR3-TACC3 fusions and expression or integration of several viruses (including HPV16) that are associated with gene inactivation. Our analyses identified potential therapeutic targets in 69% of the tumours, including 42% with targets in the phosphatidylinositol-3-OH kinase/AKT/mTOR pathway and 45% with targets (including ERBB2) in the RTK/MAPK pathway. Chromatin regulatory genes were more frequently mutated in urothelial carcinoma than in any other common cancer studied so far, indicating the future possibility of targeted therapy for chromatin abnormalitiesclose27
    corecore