2,108 research outputs found

    Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments

    Full text link
    We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B.962_{.962}C.038_{.038})2_2 wire segments as a function of post exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2_{c2}(T=0), approximately scales with Tc_c starting with an undamaged Tc_c near 37 K and Hc2_{c2}(T=0) near 32 T. Up to an annealing temperature of 400 o^ oC the recovery of Tc_c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 o^ oC a decrease in order along the c- direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc_c and Hc2_{c2}. To first order, it appears that carbon doping and neutron damaging effect the superconducting properties of MgB2_2 independently

    Nanoscale grains, high irreversibility field, and large critical current density as a function of high energy ball milling time in C-doped magnesium diboride

    Full text link
    Magnesium diboride (MgB2) powder was mechanically alloyed by high energy ball milling with C to a composition of Mg(B0.95C0.05)2 and then sintered at 1000 C in a hot isostatic press. Milling times varied from 1 minute to 3000 minutes. Full C incorporation required only 30-60 min of milling. Grain size of sintered samples decreased with increased milling time to less than 30 nm for 20-50 hrs of milling. Milling had a weak detrimental effect on connectivity. Strong irreversibility field (H*) increase (from 13.3 T to 17.2 T at 4.2 K) due to increased milling time was observed and correlated linearly with inverse grain size (1/d). As a result, high field Jc benefited greatly from lengthy powder milling. Jc(8 T, 4.2 K) peaked at > 80,000 A/cm2 with 1200 min of milling compared with only ~ 26,000 A/cm2 for 60 min of milling. This non-compositional performance increase is attributed to grain refinement of the unsintered powder by milling, and to the probable suppression of grain growth by milling-induced MgO nano-dispersions.Comment: 12 pages, 11 figure

    Ergosterol Effect on the Desaturation of 14C-Cis-Vaccenate in Tetrahymena

    Get PDF
    Supplement of ergosterol to the growth medium of the ciliated protozoan Tetrahymena pyriformis W leads to incorporation of the foreign sterol within cell membranes and suppression of synthesis of the native sterol-like compound tetrahymanol, as well as to changes in the fatty acid compositions of several major classes of membrane lipid. Alteration of fatty acid composition is thought to represent a regulatory mechanism whereby optimum membrane fluidity is maintained when the slightly dissimilar foreign sterol is added into the phospholipid bilayer of the membranes. The present study, using several different conditions of growth temperature, substrate concentrations and incubation time, and ergosterol concentrations and exposure time, is an attempt to provide evidence supporting a hypothetical regulatory mechanism. This mechanism proposes that there is a feedback regulation by membrane-bound sterol on an enzyme or enzymes involved in synthesis of the long chain fatty acids contained in membrane phospholipid. Such a mechanism could account for the balance between sterol and fatty acid content of membrane. The data presented here show that a statistically significant increase in desaturation of 14C-cis-vaccenate can be demonstrated in Tetrahymena cell cultures whose membranes contain the foreign sterol, when growth temperature is maintained at 20° or 29.5°. Tetrahymena desaturated 14C-cis-vaccenate substrate in both ergosterol supplemented and normal cultures. The 14C labeled product, 6,11-18:2 was recovered and separated by silver nitrate-Unisil column chromatography

    Fake symmetry transitions in lattice Dirac spectra

    Full text link
    In a recent lattice investigation of Ginsparg-Wilson-type Dirac operators in the Schwinger model, it was found that the symmetry class of the random matrix theory describing the small Dirac eigenvalues appeared to change from the unitary to the symplectic case as a function of lattice size and coupling constant. We present a natural explanation for this observation in the framework of a random matrix model, showing that the apparent change is caused by the onset of chiral symmetry restoration in a finite volume. A transition from unitary to symplectic symmetry does not occur.Comment: 6 pages, 3 figures, REVTe

    Systematic study of the two band/two gap superconductivity in carbon-substituted MgB2 by point-contact spectroscopy

    Full text link
    Point-contact measurements on the carbon-substituted Mg(B1x_{1-x}Cx_x)2_2 filament/powder samples directly reveal a retention of the two superconducting energy gaps in the whole doping range from x=0x = 0 to x0.1x \approx 0.1. The large gap on the σ\sigma-band is decreased in an essentially linear fashion with increasing the carbon concentrations. The changes in the the small gap Δπ\Delta_{\pi} up to 3.8 % C are proportionally smaller and are more difficult to detect but for the heavily doped sample with x0.1x \approx 0.1 and Tc=22T_c = 22 K both gaps are still present, and significantly reduced, consistent with a strong essentially linear, reduction of each gap with the transition temperature.Comment: 5 eps figure

    Systematic effects of carbon doping on the superconducting properties of Mg(B1x_{1-x}Cx_x)2_2

    Full text link
    The upper critical field, Hc2H_{c2}, of Mg(B1x_{1-x}Cx_x)2_2 has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped boron filaments are prepared by CVD techniques, and then these fibers are then exposed to Mg vapor to form the superconducting compound. The transition temperatures are depressed about 1K/1 K/% C and Hc2(T=0)H_{c2}(T=0) rises at about 5T/5 T/% C. This means that 3.5% C will depress TcT_c from 39.2K39.2 K to 36.2K36.2 K and raise Hc2(T=0)H_{c2}(T=0) from 16.0T16.0 T to 32.5T32.5 T. Higher fields are probably attainable in the region of 5% C to 7% C. These rises in Hc2H_{c2} are accompanied by a rise in resistivity at 40K40 K from about 0.5μΩcm0.5 \mu \Omega cm to about 10μΩcm10 \mu \Omega cm. Given that the samples are polycrystalline wire segments, the experimentally determined Hc2(T)H_{c2}(T) curves represent the upper Hc2(T)H_{c2}(T) manifold associated with HcH\perp c

    Superconducting and Normal State Properties of Neutron Irradiated MgB2

    Full text link
    We have performed a systematic study of the evolution of the superconducting and normal state properties of neutron irradiated MgB2_2 wire segments as a function of fluence and post exposure annealing temperature and time. All fluences used suppressed the transition temperature, Tc, below 5 K and expanded the unit cell. For each annealing temperature Tc recovers with annealing time and the upper critical field, Hc2(T=0), approximately scales with Tc. By judicious choice of fluence, annealing temperature and time, the Tc of damaged MgB2 can be tuned to virtually any value between 5 and 39 K. For higher annealing temperatures and longer annealing times the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters.Comment: Updated version, to appear in Phys. Rev.

    Stochastic field theory for a Dirac particle propagating in gauge field disorder

    Get PDF
    Recent theoretical and numerical developments show analogies between quantum chromodynamics (QCD) and disordered systems in condensed matter physics. We study the spectral fluctuations of a Dirac particle propagating in a finite four dimensional box in the presence of gauge fields. We construct a model which combines Efetov's approach to disordered systems with the principles of chiral symmetry and QCD. To this end, the gauge fields are replaced with a stochastic white noise potential, the gauge field disorder. Effective supersymmetric non-linear sigma-models are obtained. Spontaneous breaking of supersymmetry is found. We rigorously derive the equivalent of the Thouless energy in QCD. Connections to other low-energy effective theories, in particular the Nambu-Jona-Lasinio model and chiral perturbation theory, are found.Comment: 4 pages, 1 figur
    corecore