4,478 research outputs found

    Entanglement of two individual neutral atoms using Rydberg blockade

    Full text link
    We report the generation of entanglement between two individual 87^{87}Rb atoms in hyperfine ground states ∣F=1,M=1>|F=1,M=1> and ∣F=2,M=2>|F=2,M=2> which are held in two optical tweezers separated by 4 μ\mum. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.Comment: text revised, with additional reference

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing ≃0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte

    Nonextensive statistical effects in the quark-gluon plasma formation at relativistic heavy-ion collisions energies

    Full text link
    We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We impose the Gibbs conditions on the global conservation of baryon number, electric charge and strangeness number. For the hadronic phase, we study an extended relativistic mean-field theoretical model with the inclusion of strange particles (hyperons and mesons). For the quark sector, we employ an extended MIT-Bag model. In this context we focus on the relevance of non-extensive effects in the presence of strange matter.Comment: 12 pages, 5 figure

    The imprints of superstatistics in multiparticle production processes

    Full text link
    We provide an update of the overview of imprints of Tsallis nonextensive statistics seen in a multiparticle production processes. They reveal an ubiquitous presence of power law distributions of different variables characterized by the nonextensivity parameter q > 1. In nuclear collisions one additionally observes a q-dependence of the multiplicity fluctuations reflecting the finiteness of the hadronizing source. We present sum rules connecting parameters q obtained from an analysis of different observables, which allows us to combine different kinds of fluctuations seen in the data and analyze an ensemble in which the energy (E), temperature (T) and multiplicity (N) can all fluctuate. This results in a generalization of the so called Lindhard's thermodynamic uncertainty relation. Finally, based on the example of nucleus-nucleus collisions (treated as a quasi-superposition of nucleon-nucleon collisions) we demonstrate that, for the standard Tsallis entropy with degree of nonextensivity q < 1, the corresponding standard Tsallis distribution is described by q' = 2 - q > 1.Comment: 12 pages, 3 figures. Based on invited talk given by Z.Wlodarczyk at SigmaPhi2011 conference, Larnaka, Cyprus, 11-15 July 2011. To be published in Cent. Eur. J. Phys. (2011

    Regional calibration of the Pitman model for the Okavango River

    Get PDF
    This paper reports on the application of a monthly rainfall-runoff model for the Okavango River Basin. Streamflow is mainly generated in Angola where the Cuito and Cubango rivers arise. They then join and cross the Namibia/Angola border, flowing into the Okavango wetland in Botswana. The model is a modified version of the Pitman model, including more explicit ground and surface water interactions. Significant limitations in access to climatological data, and lack of sufficiently long records of observed flow for the eastern sub-basins represent great challenges to model calibration. The majority of the runoff is generated in the wetter headwater tributaries, while the lower sub-basins are dominated by channel loss processes with very little incremental flow contributions, even during wet years. The western tributaries show significantly higher seasonal variation in flow, compared to the baseflow dominated eastern tributaries: observations that are consistent with their geological differences. The basin was sub-divided into 24 sub-basins, of which 18 have gauging stations at their outlet. Satisfactory simulations were achieved with sub-basin parameter value differences that correspond to the spatial variability in basin physiographic characteristics. The limited length of historical rainfall and river discharge data over Angola precluded the use of a split sample calibration/validation test. However, satellite generated rainfall data, revised to reflect the same frequency characteristics as the historical rainfall data, were used to validate the model against the available downstream flow data during the 1990s. The overall conclusion is that the model, in spite of the limited data access, adequately represents the hydrological response of the basin and that it can be used to assess the impact of future development scenarios

    Consequences of temperature fluctuations in observables measured in high energy collisions

    Full text link
    We review the consequences of intrinsic, nonstatistical temperature fluctuations as seen in observables measured in high energy collisions. We do this from the point of view of nonextensive statistics and Tsallis distributions. Particular attention is paid to multiplicity fluctuations as a first consequence of temperature fluctuations, to the equivalence of temperature and volume fluctuations, to the generalized thermodynamic fluctuations relations allowing us to compare fluctuations observed in different parts of phase space, and to the problem of the relation between Tsallis entropy and Tsallis distributions. We also discuss the possible influence of conservation laws on these distributions and provide some examples of how one can get them without considering temperature fluctuations.Comment: Revised version of the invited contribution to The European Physical Journal A (Hadrons and Nuclei) topical issue about 'Relativistic Hydro- and Thermodynamics in Nuclear Physics' guest eds. Tamas S. Biro, Gergely G. Barnafoldi and Peter Va

    Nonextensive thermal sources of cosmic rays?

    Full text link
    The energy spectrum of cosmic rays (CR) exhibits power-like behavior with a very characteristic "knee" structure. We consider a possibility that such a spectrum could be generated by some specific nonstatistical temperature fluctuations in the source of CR with the "knee" structure reflecting an abrupt change of the pattern of such fluctuations. This would result in a generalized nonextensive statistical model for the production of CR. The possible physical mechanisms leading to these effects are discussed together with the resulting chemical composition of the CR, which follows the experimentally observed abundance of nuclei.Comment: 16 pages, 3 figures, rewritten and updated version, to be published in Centr. Eur. J. Phy

    Inelaticity in hadron-nucleus collisions from emulsion chamber studies

    Get PDF
    The inelasticity of hadron-carbon nucleus collisions in the energy region exceeding 100 TeV is estimated from the carbon-emulsion chamber data at Pamirs to be =0.65±0.08 = 0.65\pm 0.08. When combined with the recently presented data on hadron-lead nucleus collisions taken at the same energy range it results in the K∼A0.086K\sim A^{0.086} mass number dependence of inelasticity. The evaluated partial inelasticity for secondary (ν>1\nu > 1) interactions, Kν>1≃0.2K_{\nu >1} \simeq 0.2, suggests that the second and higher interactions of the excited hadron inside the nucleus proceed with only slight energy losses.Comment: LaTeX file and 5 LaTeX files with figures, 11 pages altogether. Thoroughly rewritten and modified, one figure addded one removed. To be published in Phys. Rev.

    Equivalence of volume and temperature fluctuations in power-law ensembles

    Full text link
    Relativistic particle production often requires the use of Tsallis statistics to account for the apparently power-like behavior of transverse momenta observed in the data even at a few GeV/c. In such an approach this behavior is attributed to some specific intrinsic fluctuations of the temperature TT in the hadronizing system and is fully accounted by the nonextensivity parameter qq. On the other hand, it was recently shown that similar power-law spectra can also be obtained by introducing some specific volume fluctuations, apparently without invoking the introduction of Tsallis statistics. We demonstrate that, in fact, when the total energy is kept constant, these volume fluctuations are equivalent to temperature fluctuations and can be derived from them. In addition, we show that fluctuations leading to multiparticle power-law Tsallis distributions introduce specific correlations between the considered particles. We then propose a possible way to distinguish the fluctuations in each event from those occurring from event-to-event. This could have applications in the analysis of high density events at LHC (and especially in ALICE).Comment: Revised version with new figure, footnotes and references adde
    • …
    corecore