15 research outputs found

    Pharmacological Interventions for the MATRICS Cognitive Domains in Schizophrenia: What's the Evidence?

    No full text
    Schizophrenia is a disabling, chronic psychiatric disorder with a prevalence rate of 0.5-1% in the general population. Symptoms include positive (e.g., delusions, hallucinations), negative (e.g., blunted affect, social withdrawal), as well as cognitive symptoms (e.g., memory and attention problems). Although 75-85% of patients with schizophrenia report cognitive impairments, the underlying neuropharmacological mechanisms are not well understood and currently no effective treatment is available for these impairments. This has led to the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative, which established seven cognitive domains that are fundamentally impaired in schizophrenia. These domains include verbal learning and memory, visual learning and memory, working memory, attention and vigilance, processing speed, reasoning and problem solving, and social cognition. Recently, a growing number of studies have been conducted trying to identify the underlying neuropharmacological mechanisms of cognitive impairments in schizophrenia patients. Specific cognitive impairments seem to arise from different underlying neuropharmacological mechanisms. However, most review articles describe cognition in general and an overview of the mechanisms involved in these seven separate cognitive domains is currently lacking. Therefore, we reviewed the underlying neuropharmacological mechanisms focusing on the domains as established by the MATRICS initiative which are considered most crucial in schizophreni

    Cortical Morphology Differences in Subjects at Increased Vulnerability for Developing a Psychotic Disorder: A Comparison between Subjects with Ultra-High Risk and 22q11.2 Deletion Syndrome

    No full text
    Subjects with 22q11.2 deletion syndrome (22q11DS) and subjects with ultra-high risk for psychosis (UHR) share a risk of approximately 30% to develop a psychotic disorder. Studying these groups helps identify biological markers of pathophysiological processes involved in the development of psychosis. Total cortical surface area (cSA), total cortical grey matter volume (cGMV), cortical thickness (CT), and local gyrification index (LGI) of the cortical structure have a distinct neurodevelopmental origin making them important target markers to study in relation to the development of psychosis. Structural T1-weighted high resolution images were acquired using a 3 Tesla Intera MRI system in 18 UHR subjects, 18 22q11DS subjects, and 24 matched healthy control (HC) subjects. Total cSA, total cGMV, mean CT, and regional vertex-wise differences in CT and LGI were assessed using FreeSurfer software. The Positive and Negative Syndrome Scale was used to assess psychotic symptom severity in UHR and 22q11DS subjects at time of scanning. 22q11DS subjects had lower total cSA and total cGMV compared to UHR and HC subjects. The 22q11DS subjects showed bilateral lower LGI in the i) prefrontal cortex, ii) precuneus, iii) precentral gyrus and iv) cuneus compared to UHR subjects. Additionally, lower LGI was found in the left i) fusiform gyrus and right i) pars opercularis, ii) superior, and iii) inferior temporal gyrus in 22q11DS subjects compared to HC. In comparison to 22q11DS subjects, the UHR subjects had lower CT of the insula. For both risk groups, positive symptom severity was negatively correlated to rostral middle frontal gyrus CT. A shared negative correlation between positive symptom severity and rostral middle frontal gyrus CT in UHR and 22q11DS may be related to their increased vulnerability to develop a psychotic disorder. 22q11DS subjects were characterised by widespread lower degree of cortical gyrification linked to early and postnatal neurodevelopmental pathology. No implications for early neurodevelopmental pathology were found for the UHR subjects, although they did have distinctively lower insula CT which may have arisen from defective pruning processes during adolescence. Implications of these findings in relation to development of psychotic disorders are in need of further investigation in longitudinal studie

    Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study.

    No full text
    Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions

    Bilateral thinner rostral middle frontal gyrus CT was associated with increased positive symptoms severity in both UHR subjects (n = 18) and matched 22q11DS (n = 18) subjects.

    No full text
    <p>Findings were corrected for differences in brain segmentation volume, age and gender. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0159928#pone.0159928.s001" target="_blank">S1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0159928#pone.0159928.s002" target="_blank">S2</a> Files.</p

    Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study

    No full text
    <div><p>Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions.</p></div

    Vertex-wise comparisons showing effect of diagnosis on local gyrification index (LGI) between 18 UHR and 18 age- and gender matched 22q11DS subjects.

    No full text
    <p>Comparisons show bilaterally lower gyral complexity in 22q11DS compared to UHR subjects. Significant clusters and corresponding LGI are displayed in the table. Note that LGI indices range between 1 and 5, with higher numbers denoting higher gyral complexity. RH: right hemisphere; LH: left hemisphere. See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0159928#pone.0159928.s001" target="_blank">S1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0159928#pone.0159928.s002" target="_blank">S2</a> Files.</p

    Correlation between the GM density at the peak voxel per ROI and the independent variable.

    No full text
    <p>Fig 1a: correlation between CUDIT score at baseline and GM density in the amygdala. Fig 1b: correlation between average weekly cannabis use (gram) at follow-up and GM density in the Superior Temporal Gyrus. Fig 1c: correlation between average weekly cannabis use (gram) at follow-up and GM density in the Medial Temporal Lobe (hippocampus/amygdala).</p
    corecore