62 research outputs found

    Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    Get PDF
    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors

    Methylation at Global LINE-1 Repeats in Human Blood Are Affected by Gender but Not by Age or Natural Hormone Cycles

    Get PDF
    Previously, we reported on inter-individual and gender specific variations of LINE-1 methylation in healthy individuals. In this study, we investigated whether this variability could be influenced by age or sex hormones in humans. To this end, we studied LINE-1 methylation in vivo in blood-derived DNA from individuals aged 18 to 64 years and from young healthy females at various hormone levels during the menstrual cycle. Our results show that no significant association with age was observed. However, the previously reported increase of LINE-1 methylation in males was reconfirmed. In females, although no correlation between LINE-1 or Alu methylation and hormone levels was observed, a significant stable individual specific level of methylation was noted. In vitro results largely confirmed these findings, as neither estrogen nor dihydrotestosterone affected LINE-1 or Alu methylation in Hek293T, HUVEC, or MDA-kb2 cell lines. In contrast, a decrease in methylation was observed in estrogen-treated T47-Kbluc cell lines strongly expressing estrogen receptor. The very low expression of estrogen receptor in blood cells could explain the observed insensitivity of methylation at LINE-1 to natural hormonal variations in females. In conclusion, neither natural cycle of hormones nor age has a detectable effect on the LINE-1 methylation in peripheral blood cells, while gender remains an important factor

    Legal aspects of aeronautical mobile satellite services

    No full text
    This thesis deals with the technical and legal aspects arising out of the envisaged implementation of Aeronautical Mobile Satellite Services (AMSS) for civil aviation purposes, such as communication, navigation and surveillance.After a short introduction to the subject, Part A of this thesis will deal with the technical side of the subject and will introduce the reader to the current CNS/ATM-concept and its deficiencies (Chapter 1), and to the future CNS/ATM-concept and its benefits (Chapter 2).Part B will discuss the legal aspects of the implementation of AMSS for civil aviation purposes. Starting from the legal aspects of AMSS with respect ot the law of outer space (Chapter 3), it will explain the current regime of telecommunications developed by the International Telecommunication Union (ITU) and its impact on AMSS (Chapter 4). Then, the legal aspects of AMSS with respect to international public air law (Chapter 5) will be examined and some predominant issues with respect to the appropriate institutional framework to implement AMSS will be discussed (Chapter 6). Finally, the findings will be summarized in a conclusion

    Relationship between Sphingolipid and Phospholipid Metabolism

    No full text

    Neutral Sphingomyelinase 1 Deficiency in the Mouse Causes No Lipid Storage Disease

    No full text
    Sphingomyelin is a major lipid in the bilayer of subcellular membranes of eukaryotic cells. Different sphingomyelinases catalyze the initial step in the catabolism of sphingomyelin, the hydrolysis to phosphocholine and ceramide. Sphingomyelinases have been postulated to generate ceramide as a lipophilic second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. To elucidate the function of the first cloned Mg(2+)-dependent, neutral sphingomyelinase (nSMase 1) in sphingomyelin catabolism and its potential role in signaling processes in a genetic and molecular approach, we have generated an nSMase 1-null mutant mouse line by gene targeting. The nSMase 1-deficient mice show an unconspicuous phenotype and no accumulation or changed metabolism of sphingomyelin or other lipids, despite grossly reduced nSMase activity in all organs except brain. We also addressed the recent proposal that nSMase 1 possesses lysophospholipase C activity. The unaltered metabolism of lysophosphatidylcholine or lyso-platelet-activating factor excludes the proposed role of nSMase 1 as a lysophospholipase C
    corecore