3 research outputs found

    Metabolism of Growth Hormone Releasing Peptides

    No full text
    New, potentially performance enhancing compounds have frequently been introduced to licit and illicit markets and rapidly distributed via worldwide operating Internet platforms. Developing fast analytical strategies to follow these new trends is one the most challenging issues for modern doping control analysis. Even if reference compounds for the active drugs are readily obtained, their unknown metabolism complicates effective testing strategies. Recently, a new class of small C-terminally amidated peptides comprising four to seven amino acid residues received considerable attention of sports drug testing authorities due to their ability to stimulate growth hormone release from the pituitary. The most promising candidates are the growth hormone releasing peptide (GHRP)-1, -2, -4, -5, -6, hexarelin, alexamorelin, and ipamorelin. With the exemption of GHRP-2, the entity of these peptides represents nonapproved pharmaceuticals; however, via Internet providers, all compounds are readily available. To date, only limited information on the metabolism of these substances is available and merely one metabolite for GHRP-2 is established. Therefore, a comprehensive in vivo (po and iv administration in rats) and in vitro (with human serum and recombinant amidase) study was performed in order to generate information on urinary metabolites potentially useful for routine doping controls. The urine samples from the in vivo experiments were purified by mixed-mode cation-exchange solid-phase extraction and analyzed by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution/high-accuracy mass spectrometry. Combining the high resolution power of a benchtop Orbitrap mass analyzer for the first metabolite screening and the speed of a quadrupole/time-of-flight (Q-TOF) instrument for identification, urinary metabolites were screened by means of a sensitive full scan analysis and subsequently confirmed by high-accuracy product ion scan experiments. Two deuterium-labeled internal standards (triply deuterated GHRP-4 and GHRP-2 metabolite) were used to optimize the extraction and analysis procedure. Overall, 28 metabolites (at least three for each GHRP) were identified from the in vivo samples and main metabolites were confirmed by the human in vitro model. All identified metabolites were formed due to exopeptidase- (amino- or carboxy-), amidase-, or endopeptidase activity

    Isolation, Enrichment, and Analysis of Erythropoietins in Anti-Doping Analysis by Receptor-Coated Magnetic Beads and Liquid Chromatography–Mass Spectrometry

    No full text
    Human erythropoietin (hEPO) is an erythropoiesis stimulating hormone frequently employed in antianemia therapy. Its capability to increase the amount of red blood cells however makes hEPO and its derivatives also attractive to dishonest athletes aiming at an artificial and illicit enhancement of their endurance performance. A major objective of the international antidoping fight is the elimination of drug misuse and prevention of severe adverse effects caused by nontherapeutic administrations of highly potent drugs. The emergence of novel and innovative erythropoietin-mimetic agents (EMAs) has been continuously growing in the last years, and the option of using dedicated monoclonal antibodies (mAb) for analytical and sample preparation approaches is gradually reaching limits. In the present study the common ability and property of all EMAs, to bind on the human erythropoietin receptor (hEPOR), is therefore exploited. An alternative methodology to isolate and analyze EMAs, in particular endogenous EPO and the recombinant forms EPOzeta, darbepoetin alfa, and C.E.R.A., from human urine is described, employing conventional ultrafiltration for preconcentration of the target analytes followed by EMA-specific isolation via hEPOR-bound magnetic beads. Analytical data were generated by means of gel-based electrophoretic analysis and nanoliquid chromatography/high resolution/high accuracy tandem mass spectrometry. Limits of detection enabled by the established sample preparation protocols were approximately 20 pg/mL for EPOzeta, 30 pg/mL for darbepoetin alfa, and 80 pg/mL for C.E.R.A
    corecore