6,468 research outputs found

    Counteracting systems of diabaticities using DRAG controls: The status after 10 years

    Full text link
    The task of controlling a quantum system under time and bandwidth limitations is made difficult by unwanted excitations of spectrally neighboring energy levels. In this article we review the Derivative Removal by Adiabatic Gate (DRAG) framework. DRAG is a multi-transition variant of counterdiabatic driving, where multiple low-lying gapped states in an adiabatic evolution can be avoided simultaneously, greatly reducing operation times compared to the adiabatic limit. In its essence, the method corresponds to a convergent version of the superadiabatic expansion where multiple counterdiabaticity conditions can be met simultaneously. When transitions are strongly crowded, the system of equations can instead be favorably solved by an average Hamiltonian (Magnus) expansion, suggesting the use of additional sideband control. We give some examples of common systems where DRAG and variants thereof can be applied to improve performance.Comment: 7 pages, 2 figure

    Engineering adiabaticity at an avoided crossing with optimal control

    Full text link
    We investigate ways to optimize adiabaticity and diabaticity in the Landau-Zener model with non-uniform sweeps. We show how diabaticity can be engineered with a pulse consisting of a linear sweep augmented by an oscillating term. We show that the oscillation leads to jumps in populations whose value can be accurately modeled using a model of multiple, photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al. [New J. Phys. 7, 218 (2005)]. We extend the study on diabaticity using methods derived from optimal control. We also show how to preserve adiabaticity with optimal pulses at limited time, finding a non-uniform quantum speed limit

    Magnetic phase transitions in the two-dimensional frustrated quantum antiferromagnet Cs2CuCl4

    Full text link
    We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J'/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields

    Crossover from weak to strong coupling regime in dispersive circuit QED

    Full text link
    We study the decoherence of a superconducting qubit due to the dispersive coupling to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we associate with a phase Purcell effect, and enter into a strong coupling regime, with qualitatively different behavior of the dephasing rate. We identify and give a physicaly intuitive discussion of both decoherence mechanisms. Our results can be applied, with small adaptations, to a large variety of other physical systems, e. g. trapped ions and cavity QED, boosting theoretical and experimental decoherence studies.Comment: Published versio
    • …
    corecore