18 research outputs found

    Inverse electron transfer in peroxyoxalate chemiexcitation using easily reducible activators

    Get PDF
    Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron transfer, from the peroxide intermediate to the activator, in its chemiexcitation step. Relative catalytic rate constants and singlet quantum yields were obtained for the peroxyoxalate reaction, using 9-chloro, 9,10-dichloro, 9-cyano and 9,10-dicyanoanthracenes as activators. The linear free-energy correlation of the relative rate constants with the activators' reduction potentials and the dependence of the quantum yields on the released energy confirm, for the first time, the occurrence of this inverse electron transfer.À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Synthesis of unstable cyclic peroxides for chemiluminescence studies

    Get PDF
    Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, α-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time

    Light: a rare reaction product

    Get PDF
    The production of visible light by chemical reactions constitutes interesting and fascinating phenomena and several reaction mechanisms are discussed to rationalize excited state formation. Most efficient chemiluminescence reactions are thought to involve one or more electron transfer steps and chemiexcitation is believed to occur by radical annihilation. A brief introduction to the general principles of light production and the main known chemiexcitation mechanisms will be given here. Subsequently, recent results on the mechanistic elucidation of efficient chemiluminescence systems, as the peroxyoxalate reaction, the induced decomposition of phenoxy-substituted 1,2-dioxetanes and the catalyzed decomposition of new a-peroxylactones will be discussed.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenadoria para o Aperfeiçoamento de Pessoal do Ensino Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Chemiluminescence as a PDT light source for microbial control

    Get PDF
    The photodynamic therapy (PDT) is a combination of using a photosensitizer agent, light and oxygen that can cause oxidative cellular damage. This technique is applied in several cases, including for microbial control. The most extensively studied light sources for this purpose are lasers and LED-based systems. Few studies treat alternative light sources based PDT. Sources which present flexibility, portability and economic advantages are of great interest. In this study, we evaluated the in vitro feasibility for the use of chemiluminescence as a PDT light source to induce Staphylococcus aureus reduction. The Photogem® concentration varied from 0 to 75 μg/ml and the illumination time varied from 60 min to 240 min. The long exposure time was necessary due to the low irradiance achieved with chemiluminescence reaction at μW/cm2 level. The results demonstrated an effective microbial reduction of around 98% for the highest photosensitizer concentration and light dose. These data suggest the potential use of chemiluminescence as a light source for PDT microbial control, with advantages in terms of flexibility, when compared with conventional sources.FAPESP (CePOF-CEPID)CNP

    O sistema quimiluminescente peróxi-oxalato

    No full text

    Mechanism of 3,4-dihydroxybenzaldehyde electropolymerization at carbon paste electrodes : catalytic detection of NADH

    No full text
    Cyclic voltammetry was used to study 3,4-dihydroxybenzaldehyde (3,4-DHB) electropolymerization processes on carbon paste electrodes. The characteristics of the electropolymerized films were highly dependent on pH, anodic switching potential, scan rate, 3,4-DHB concentrations and number of cycles. Film stability was determined in citrate/phosphate buffer solutions at the same pH used during the electropolymerization process. The best conditions to prepare carbon paste modified electrodes were pH 7.8; 0.0 <= Eapl <= 0.25 V; 10 mV s-1; 0.25 mmol L-1 3,4-DHB and 10 scans. These carbon paste modified electrodes were used for NADH catalytic detection at 0.23 V in the range 0.015 <= [NADH] <= 0.21 mmol L-1. Experimental data were used to propose a mechanism for the 3,4--DHB electropolymerization processes, which involves initial phenoxyl radical formation
    corecore