8 research outputs found

    On the behaviour of porcine adipose and skeletal muscle tissues under shock compression

    Get PDF
    The response of porcine adipose and skeletal muscle tissues to shock compression has been investigated using the plate-impact technique in conjunction with manganin foil pressure gauge diagnostics. This approach has allowed for measurement of the levels of uniaxial stress imparted to both skeletal muscle and rendered adipose tissue by the shock. In addition, the lateral stress component generated within adipose tissue during shock loading has also been investigated. The techniques employed in this study have allowed for equation-of-state relationships to be established for the investigated materials, highlighting non-hydrodynamic behaviour in each type of tissue over the range of investigated impact conditions. While the adipose tissue selected in this work has been shown to strengthen with impact stress in a manner similar to that seen to occur in polymeric materials, the skeletal muscle tissues exhibited a ow strength, or resistance to compression, that was independent of impact stress. Both the response of the adipose material and tested skeletal muscle tissues lie in contrast with the shock response of ballistic gelatin, which has previously been shown to exhibit hydrodynamic behaviour under equivalent loading conditions. Plate-impact experiments have also been used to investigate the shock response of a homogenized variant of one of the investigated muscle tissues. In the homogenized samples, the natural structure of skeletal muscle tissue, i.e. a fibrous and anisotropic composite, was heavily disrupted and the resulting material was milled into a fine paste. Rather than matching the response of the unaltered tissues, the datapoints generated from this type of experiment were seen to collapse back on to the hydrodynamic response predicted for skeletal muscle by its linear equation-of-state (Us = 1.72 + 1.88up). This suggests that the resistance to compression apparent in the data obtained for the virgin tissues was a direct result of the interaction of the shock with the quasi-organized structure of skeletal muscle. A soft-capture system has been developed in order to facilitate post-shock analysis of skeletal muscle tissue and to ascertain the effects of shock loading upon the structure of the material. The system was designed to deliver a one-dimensional, at-topped shock pulse to the sample prior to release. The overall design of the system was aided by use of the non-linear and explicit hydrocode ANSYSR AUTODYN. Following shock compression, sections of tissue were imaged using a transmission electron microscope (TEM). Both an auxetic-like response and large-scale disruption to the I-band/Z-disk regions within the tissue's structure were observed. Notably, these mechanisms have been noted to occur as a result of hydrostatic compression of skeletal muscle within the literature

    On the interpretation of lateral manganin gauge stress measurements in polymers

    Get PDF
    Encapsulated wire-element stress gauges enable changes in lateral stress during shock loading to be directly monitored. However, there is substantial debate with regards to interpretation of observed changes in stress behind the shock front; a phenomenon attributed both to changes in material strength and shock- dispersion within the gauge-encapsulation. Here, a pair of novel techniques which both modify or remove the embedding medium where such stress gauges are placed within target materials have been used to try and inform this debate. The behavior of three polymeric materials of differing complexity was considered, namely polystyrene, the commercially important resin transfer moulding RTM 6 resin and a commercially available fat lard. Comparison to the response of embedded gauges has suggested a possible slight decrease in the absolute magnitude of stress. However, changing the encapsulation has no detectable effect on the gradient behind the shock in such polymeric systems

    The shock response of a rendered porcine fat

    Get PDF
    Characterization of the shock response of biological materials is required in order to develop an understanding of how such materials behave under high strain-rate loading. In this work, a predominately linear U s-up Hugoniot relationship for a rendered porcine fat has been established using the plate- impact technique. This has been shown to take the form U s=1.58+2.47up (ρ0 =0.945 g /cc) and comparison has been made between the dynamic behavior of the adipose material and both 20 wt % ballistic gelatin and water. The adipose material has been shown to behave in likeness with simple polymers such as polyethylene and to strengthen under shock loading, unlike ballistic gelatin, which has been shown to behave hydrodynamically. An experimental design incorporating direct insertion of lateral stress gauges within the rendered fat has given insight into both the behavior of lateral gauges and the lateral stress response of the material under dynamic loadin

    On the dynamic behavior of three readily available soft tissue simulants

    Get PDF
    Plate-impact experiments have been employed to investigate the dynamic response of three readily available tissue simulants for ballistic purposes: gelatin, ballistic soap (both subdermal tissue simulants), and lard (adipose layers). All three materials exhibited linear Hugoniot equations-of-state in the US-uP plane. While gelatin behaved hydrodynamically under shock, soap and lard appeared to strengthen under increased loading. Interestingly, the simulants under test appeared to strengthen in a material-independent manner on shock arrival (tentatively attributed to a rearrangement of the amorphous molecular chains under loading). However, material-specific behavior was apparent behind the shock. This behavior appeared to correlate with microstructural complexity, suggesting a steric hindrance effect
    corecore