13 research outputs found

    The impact of DNA chip technology on molecular medicine

    Get PDF

    Immunohistochemical staining of radixin and moesin in prostatic adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some members of the Protein 4.1 superfamily are believed to be involved in cell proliferation and growth, or in the regulation of these processes. While the expression levels of two members of this family, radixin and moesin, have been studied in many tumor types, to our knowledge they have not been investigated in prostate cancer.</p> <p>Methods</p> <p>Tissue microarrays were immunohistochemically stained for either radixin or moesin, with the staining intensities subsequently quantified and statistically analyzed using One-Way ANOVA or nonparametric equivalent with subsequent Student-Newman-Keuls tests for multiple comparisons. There were 11 cases of normal donor prostates (NDP), 14 cases of benign prostatic hyperplasia (BPH), 23 cases of high-grade prostatic intraepithelial neoplasia (HGPIN), 88 cases of prostatic adenocarcinoma (PCa), and 25 cases of normal tissue adjacent to adenocarcinoma (NAC) analyzed in the microarrays.</p> <p>Results</p> <p>NDP, BPH, and HGPIN had higher absolute staining scores for radixin than PCa and NAC, but with a significant difference observed between only HGPIN and PCa (p = < 0.001) and HGPIN and NAC (p = 0.001). In the moesin-stained specimens, PCa, NAC, HGPIN, and BPH all received absolute higher staining scores than NDP, but the differences were not significant. Stage 4 moesin-stained PCa had a significantly reduced staining intensity compared to Stage 2 (p = 0.003).</p> <p>Conclusions</p> <p>To our knowledge, these studies represent the first reports on the expression profiles of radixin and moesin in prostatic adenocarcinoma. The current study has shown that there were statistically significant differences observed between HGPIN and PCa and HGPIN and NAC in terms of radixin expression. The differences in the moesin profiles by tissue type were not statistically significant. Additional larger studies with these markers may further elucidate their potential roles in prostatic neoplasia progression.</p

    Myoepithelial cells: good fences make good neighbors

    Get PDF
    The mammary gland consists of an extensively branched ductal network contained within a distinctive basement membrane and encompassed by a stromal compartment. During lactation, production of milk depends on the action of the two epithelial cell types that make up the ductal network: luminal cells, which secrete the milk components into the ductal lumen; and myoepithelial cells, which contract to aid in the ejection of milk. There is increasing evidence that the myoepithelial cells also play a key role in the organizational development of the mammary gland, and that the loss and/or change of myoepithelial cell function is a key step in the development of breast cancer. In this review we briefly address the characteristics of breast myoepithelial cells from human breast and mouse mammary gland, how they function in normal mammary gland development, and their recently appreciated role in tumor suppression

    AKAPs integrate genetic findings for autism spectrum disorders

    Get PDF
    Contains fulltext : 115371.pdf (publisher's version ) (Open Access)Autism spectrum disorders (ASDs) are highly heritable, and six genome-wide association studies (GWASs) of ASDs have been published to date. In this study, we have integrated the findings from these GWASs with other genetic data to identify enriched genetic networks that are associated with ASDs. We conducted bioinformatics and systematic literature analyses of 200 top-ranked ASD candidate genes from five published GWASs. The sixth GWAS was used for replication and validation of our findings. Further corroborating evidence was obtained through rare genetic variant studies, that is, exome sequencing and copy number variation (CNV) studies, and/or other genetic evidence, including candidate gene association, microRNA and gene expression, gene function and genetic animal studies. We found three signaling networks regulating steroidogenesis, neurite outgrowth and (glutamatergic) synaptic function to be enriched in the data. Most genes from the five GWASs were also implicated-independent of gene size-in ASDs by at least one other line of genomic evidence. Importantly, A-kinase anchor proteins (AKAPs) functionally integrate signaling cascades within and between these networks. The three identified protein networks provide an important contribution to increasing our understanding of the molecular basis of ASDs. In addition, our results point towards the AKAPs as promising targets for developing novel ASD treatments
    corecore