29 research outputs found

    Structure–Activity Relationships of the S‑Linked Glycocin Sublancin

    No full text
    Sublancin is a 37-amino acid antimicrobial peptide belonging to the glycocin family of natural products. It contains two helices that are held together by two disulfide bonds as well as an unusual S-glucosidic linkage to a Cys in a loop connecting the helices. We report the reconstitution of the biosynthetic pathway to this natural product in <i>Escherichia coli</i>. This technology enabled the evaluation of the structure–activity relationships of the solvent-exposed residues in the helices. The biosynthetic machinery proved tolerant of changes in both helices, and the bioactivity studies of the resulting mutants show that two residues in helix B are important for bioactivity, Asn31 and Arg33

    NMR Structure of the S‑Linked Glycopeptide Sublancin 168

    No full text
    Sublancin 168 is a member of a small group of glycosylated antimicrobial peptides known as glycocins. The solution structure of sublancin 168, a 37-amino-acid peptide produced by <i>Bacillus subtilis</i> 168, has been solved by nuclear magnetic resonance (NMR) spectroscopy. Sublancin comprises two α-helices and a well-defined interhelical loop. The two helices span residues 6–16 and 26–35, and the loop region encompasses residues 17–25. The 9-amino-acid loop region contains a β-S-linked glucose moiety attached to Cys22. Hydrophobic interactions as well as hydrogen bonding are responsible for the well-structured loop region. The three-dimensional structure provides an explanation for the previously reported extraordinary high stability of sublancin 168

    The Glycosyltransferase Involved in Thurandacin Biosynthesis Catalyzes Both O- and S‑Glycosylation

    No full text
    The S-glycosyltransferase SunS is a recently discovered enzyme that selectively catalyzes the conjugation of carbohydrates to the cysteine thiol of proteins. This study reports the discovery of a second S-glycosyltransferase, ThuS, and shows that ThuS catalyzes both S-glycosylation of the thiol of cysteine and O-glycosylation of the hydroxyl group of serine in peptide substrates. ThuS-catalyzed S-glycosylation is more efficient than O-glycosylation, and the enzyme demonstrates high tolerance with respect to both nucleotide sugars and peptide substrates. The biosynthesis of the putative products of the <i>thuS</i> gene cluster was reconstituted <i>in vitro</i>, and the resulting S-glycosylated peptides thurandacin A and B exhibit highly selective antimicrobial activity toward <i>Bacillus thuringiensis.</i
    corecore