78 research outputs found

    Coherent single electron spin control in a slanting Zeeman field

    Get PDF
    We consider a single electron in a 1D quantum dot with a static slanting Zeeman field. By combining the spin and orbital degrees of freedom of the electron, an effective quantum two-level (qubit) system is defined. This pseudo-spin can be coherently manipulated by the voltage applied to the gate electrodes, without the need for an external time-dependent magnetic field or spin-orbit coupling. Single qubit rotations and the C-NOT operation can be realized. We estimated relaxation (T1T_1) and coherence (T2T_{2}) times, and the (tunable) quality factor. This scheme implies important experimental advantages for single electron spin control.Comment: 4 pages, 3 figure

    A kinetic Monte Carlo approach for Boolean logic functionality in gold nanoparticle networks

    Get PDF
    Nanoparticles interconnected by insulating organic molecules exhibit nonlinear switching behavior at low temperatures. By assembling these switches into a network and manipulating charge transport dynamics through surrounding electrodes, the network can be reconfigurably functionalized to act as any Boolean logic gate. This work introduces a kinetic Monte Carlo-based simulation tool, applying established principles of single electronics to model charge transport dynamics in nanoparticle networks. We functionalize nanoparticle networks as Boolean logic gates and assess their quality using a fitness function. Based on the definition of fitness, we derive new metrics to quantify essential nonlinear properties of the network, including negative differential resistance and nonlinear separability. These nonlinear properties are crucial not only for functionalizing the network as Boolean logic gates but also when our networks are functionalized for brain-inspired computing applications in the future. We address fundamental questions about the dependence of fitness and nonlinear properties on system size, number of surrounding electrodes, and electrode positioning. We assert the overall benefit of having more electrodes, with proximity to the network’s output being pivotal for functionality and nonlinearity. Additionally, we demonstrate an optimal system size and argue for breaking symmetry in electrode positioning to favor nonlinear properties

    A kinetic Monte Carlo Approach for Boolean Logic Functionality in Gold Nanoparticle Networks

    Full text link
    Nanoparticles interconnected by insulating organic molecules exhibit nonlinear switching behavior at low temperatures. By assembling these switches into a network and manipulating charge transport dynamics through surrounding electrodes, the network can be reconfigurably functionalized to act as any Boolean logic gate. This work introduces a kinetic Monte Carlo-based simulation tool, applying established principles of single electronics to model charge transport dynamics in nanoparticle networks. We functionalize nanoparticle networks as Boolean logic gates and assess their quality using a fitness function. Based on the definition of fitness, we derive new metrics to quantify essential nonlinear properties of the network, including negative differential resistance and nonlinear separability. These nonlinear properties are crucial not only for functionalizing the network as Boolean logic gates but also when our networks are functionalized for brain-inspired computing applications in the future. We address fundamental questions about the dependence of fitness and nonlinear properties on system size, number of surrounding electrodes, and electrode positioning. We assert the overall benefit of having more electrodes, with proximity to the network's output being pivotal for functionality and nonlinearity. Additionally, we demonstrate a optimal system size and argue for breaking symmetry in electrode positioning to favor nonlinear properties.Comment: 15 pages, 12 figure

    Toward a formal theory for computing machines made out of whatever physics offers: extended version

    Full text link
    Approaching limitations of digital computing technologies have spurred research in neuromorphic and other unconventional approaches to computing. Here we argue that if we want to systematically engineer computing systems that are based on unconventional physical effects, we need guidance from a formal theory that is different from the symbolic-algorithmic theory of today's computer science textbooks. We propose a general strategy for developing such a theory, and within that general view, a specific approach that we call "fluent computing". In contrast to Turing, who modeled computing processes from a top-down perspective as symbolic reasoning, we adopt the scientific paradigm of physics and model physical computing systems bottom-up by formalizing what can ultimately be measured in any physical substrate. This leads to an understanding of computing as the structuring of processes, while classical models of computing systems describe the processing of structures.Comment: 76 pages. This is an extended version of a perspective article with the same title that will appear in Nature Communications soon after this manuscript goes public on arxi

    1/ f Noise and Machine Intelligence in a Nonlinear Dopant Atom Network

    Get PDF
    Noise exists in nearly all physical systems ranging from simple electronic devices such as transistors to complex systems such as neural networks. To understand a system's behavior, it is vital to know the origin of the noise and its characteristics. Recently, it was shown that the nonlinear electronic properties of a disordered dopant atom network in silicon can be exploited for efficiently executing classification tasks through “material learning.” Here, we study the dopant network's intrinsic 1/f noise arising from Coulomb interactions, and its impact on the features that determine its computational abilities, viz., the nonlinearity and the signal‐to‐noise ratio (SNR), is investigated. The findings on optimal SNR and nonlinear transformation of data by this nonlinear network provide a guideline for the scaling of physical learning machines and shed light on neuroscience from a new perspective

    Charge transport in nanoscale vertical organic semiconductor pillar devices

    Get PDF
    We report charge transport measurements in nanoscale vertical pillar structures incorporating ultrathin layers of the organic semiconductor poly(3-hexylthiophene)(P3HT). P3HT layers with thickness down to 5 nm are gently top-contacted using wedging transfer, yielding highly reproducible, robust nanoscale junctions carrying high current densities (up to 10610^6 A/m2^2). Current-voltage data modeling demonstrates excellent hole injection. This work opens up the pathway towards nanoscale, ultrashort-channel organic transistors for high-frequency and high-current-density operation.Comment: 30 pages, 8 figures, 1 tabl

    Covalent coupling of nanoparticles with low-density functional ligands to surfaces via click chemistry

    Get PDF
    We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate

    Depletion-mode Quantum Dots in Intrinsic Silicon

    Get PDF
    We report the fabrication and electrical characterization of depletion-mode quantum dots in a two-dimensional hole gas (2DHG) in intrinsic silicon. We use fixed charge in a SiO2_2/Al2_2O3_3 dielectric stack to induce a 2DHG at the Si/SiO2_2 interface. Fabrication of the gate structures is accomplished with a single layer metallization process. Transport spectroscopy reveals regular Coulomb oscillations with charging energies of 10-15 meV and 3-5 meV for the few- and many-hole regimes, respectively. This depletion-mode design avoids complex multilayer architectures requiring precision alignment, and allows to adopt directly best practices already developed for depletion dots in other material systems. We also demonstrate a method to deactivate fixed charge in the SiO2_2/Al2_2O3_3 dielectric stack using deep ultraviolet light, which may become an important procedure to avoid unwanted 2DHG build-up in Si MOS quantum bits.Comment: Accepted to Applied Physics Letters. 5 pages, 3 figure

    Anisotropic Pauli spin blockade in hole quantum dots

    Get PDF
    We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic fields to spin-flip cotunneling, for which we measure a strong anisotropy related to an anisotropic g-factor. At higher magnetic fields we see signatures for leakage current caused by spin-orbit coupling between (1,1)-singlet and (2,0)-triplet states. Taking into account these anisotropic spin-flip mechanisms, we can choose the magnetic field direction with the longest spin lifetime for improved spin-orbit qubits
    corecore