118 research outputs found

    Guidelines for implementation of cystic fibrosis newborn screening programs: Cystic Fibrosis Foundation workshop report

    Get PDF
    Newborn screening for cystic fibrosis offers the opportunity for early intervention and improved outcomes. This summary, resulting from a workshop sponsored by the Cystic Fibrosis Foundation to facilitate implementation of widespread high quality cystic fibrosis newborn screening, outlines the steps necessary for success based on the experience of existing programs. Planning should begin with a workgroup composed of those who will be responsible for the success of the local program, typically including the state newborn screening program director and cystic fibrosis care center directors. The workgroup must develop a screening algorithm based on program resources and goals including mechanisms available for sample collection, regional demographics, the spectrum of cystic fibrosis disease to be detected, and acceptable failure rates of the screen. The workgroup must also ensure that all necessary guidelines and resources for screening, diagnosis, and care be in place prior to cystic fibrosis newborn screening implementation. These include educational materials for parents and primary care providers; systems for screening and for providing diagnostic testing and counseling for screen-positive infants and their families; and protocols for care of this unique population. This summary explores the benefits and risks of various screening algorithms, including complex situations that can occur involving unclear diagnostic results, and provides guidelines and sample materials for state newborn screening programs to develop and implement high quality screening for cystic fibrosis

    Hyperhydration to Improve Kidney Outcomes in Children with Shiga Toxin-Producing E. coli Infection: A multinational embedded cluster crossover randomized trial (the HIKO STEC trial)

    Get PDF
    BACKGROUND: Shiga toxin-producing E. coli (STEC) infections affect children and adults worldwide, and treatment remain solely supportive. Up to 15-20% of children infected by high-risk STEC (i.e., E. coli that produce Shiga toxin 2) develop hemolytic anemia, thrombocytopenia, and kidney failure (i.e., hemolytic uremic syndrome (HUS)), over half of whom require acute dialysis and 3% die. Although no therapy is widely accepted as being able to prevent the development of HUS and its complications, several observational studies suggest that intravascular volume expansion (hyperhydration) may prevent end organ damage. A randomized trial is needed to confirm or refute this hypothesis. METHODS: We will conduct a pragmatic, embedded, cluster-randomized, crossover trial in 26 pediatric institutions to determine if hyperhydration, compared to conservative fluid management, improves outcomes in 1040 children with high-risk STEC infections. The primary outcome is major adverse kidney events within 30 days (MAKE30), a composite measure that includes death, initiation of new renal replacement therapy, or persistent kidney dysfunction. Secondary outcomes include life-threatening, extrarenal complications, and development of HUS. Pathway eligible children will be treated per institutional allocation to each pathway. In the hyperhydration pathway, all eligible children are hospitalized and administered 200% maintenance balanced crystalloid fluids up to targets of 10% weight gain and 20% reduction in hematocrit. Sites in the conservative fluid management pathway manage children as in- or outpatients, based on clinician preference, with the pathway focused on close laboratory monitoring, and maintenance of euvolemia. Based on historical data, we estimate that 10% of children in our conservative fluid management pathway will experience the primary outcome. With 26 clusters enrolling a mean of 40 patients each with an intraclass correlation coefficient of 0.11, we will have 90% power to detect a 5% absolute risk reduction. DISCUSSION: HUS is a devastating illness with no treatment options. This pragmatic study will determine if hyperhydration can reduce morbidity associated with HUS in children with high-risk STEC infection. TRIAL REGISTRATION: ClinicalTrials.gov NCT05219110 . Registered on February 1, 2022

    Generating a taxonomy for genetic conditions relevant to reproductive planning

    Get PDF
    As genome or exome sequencing (hereafter genome-scale sequencing) becomes more integrated into standard care, carrier testing is an important possible application. Carrier testing using genome-scale sequencing can identify a large number of conditions, but choosing which conditions/genes to evaluate as well as which results to disclose can be complicated. Carrier testing generally occurs in the context of reproductive decision-making and involves patient values in a way that other types of genetic testing may not. The Kaiser Permanente Clinical Sequencing Exploratory Research program is conducting a randomized clinical trial of preconception carrier testing that allows participants to select their preferences for results from among broad descriptive categories rather than selecting individual conditions. This paper describes 1) the criteria developed by the research team, the return of results committee (RORC), and stakeholders for defining the categories; 2) the process of refining the categories based on input from patient focus groups and validation through a patient survey; and, 3) how the RORC then assigned specific gene-condition pairs to taxonomy categories being piloted in the trial. The development of four categories (serious, moderate/mild, unpredictable, late onset) for sharing results allows patients to select results based on their values without separately deciding their interest in knowing their carrier status for hundreds of conditions. A fifth category, lifespan limiting, was always shared. The lessons learned may be applicable in other results disclosure situations, such as incidental findings

    ASHG/ACMG Report Points to Consider: Ethical, Legal and Psychosocial Implications of Genetic Testing in Children and Adolescents

    Get PDF
    In 1995, the American Society of Human Genetics (ASHG) and American College of Medical Genetics and Genomics (ACMG) jointly published a statement on genetic testing in children and adolescents. In the past 20 years, much has changed in the field of genetics, including the development of powerful new technologies, new data from genetic research on children and adolescents, and substantial clinical experience. This statement represents current opinion by the ASHG on the ethical, legal, and social issues concerning genetic testing in children. These recommendations are relevant to families, clinicians, and investigators. After a brief review of the 1995 statement and major changes in genetic technologies in recent years, this statement offers points to consider on a broad range of test technologies and their applications in clinical medicine and research. Recommendations are also made for record and communication issues in this domain and for professional education

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    The Clinical Sequencing Evidence-Generating Research Consortium: Integrating Genomic Sequencing in Diverse and Medically Underserved Populations

    Get PDF
    The Clinical Sequencing Evidence-Generating Research (CSER) consortium, now in its second funding cycle, is investigating the effectiveness of integrating genomic (exome or genome) sequencing into the clinical care of diverse and medically underserved individuals in a variety of healthcare settings and disease states. The consortium comprises a coordinating center, six funded extramural clinical projects, and an ongoing National Human Genome Research Institute (NHGRI) intramural project. Collectively, these projects aim to enroll and sequence over 6,100 participants in four years. At least 60% of participants will be of non-European ancestry or from underserved settings, with the goal of diversifying the populations that are providing an evidence base for genomic medicine. Five of the six clinical projects are enrolling pediatric patients with various phenotypes. One of these five projects is also enrolling couples whose fetus has a structural anomaly, and the sixth project is enrolling adults at risk for hereditary cancer. The ongoing NHGRI intramural project has enrolled primarily healthy adults. Goals of the consortium include assessing the clinical utility of genomic sequencing, exploring medical follow up and cascade testing of relatives, and evaluating patient-provider-laboratory level interactions that influence the use of this technology. The findings from the CSER consortium will offer patients, healthcare systems, and policymakers a clearer understanding of the opportunities and challenges of providing genomic medicine in diverse populations and settings, and contribute evidence toward developing best practices for the delivery of clinically useful and cost-effective genomic sequencing in diverse healthcare settings

    Parental Factors Associated With the Decision to Participate in a Neonatal Clinical Trial

    Get PDF
    Importance: It remains poorly understood how parents decide whether to enroll a child in a neonatal clinical trial. This is particularly true for parents from racial or ethnic minority populations. Understanding factors associated with enrollment decisions may improve recruitment processes for families, increase enrollment rates, and decrease disparities in research participation. Objective: To assess differences in parental factors between parents who enrolled their infant and those who declined enrollment for a neonatal randomized clinical trial. Design, setting, and participants: This survey study conducted from July 2017 to October 2019 in 12 US level 3 and 4 neonatal intensive care units included parents of infants who enrolled in the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) trial or who were eligible but declined enrollment. Data were analyzed October 2019 through July 2020. Exposure: Parental choice of enrollment in neonatal clinical trial. Main outcomes and measures: Percentages and odds ratios (ORs) of parent participation as categorized by demographic characteristics, self-assessment of child's medical condition, study comprehension, and trust in medical researchers. Survey questions were based on the hypothesis that parents who enrolled their infant in HEAL differ from those who declined enrollment across 4 categories: (1) infant characteristics and parental demographic characteristics, (2) perception of infant's illness, (3) study comprehension, and (4) trust in clinicians and researchers. Results: Of a total 387 eligible parents, 269 (69.5%) completed the survey and were included in analysis. This included 183 of 242 (75.6%) of HEAL-enrolled and 86 of 145 (59.3%) of HEAL-declined parents. Parents who enrolled their infant had lower rates of Medicaid participation (74 [41.1%] vs 47 [55.3%]; P = .04) and higher rates of annual income greater than $55 000 (94 [52.8%] vs 30 [37.5%]; P = .03) compared with those who declined. Black parents had lower enrollment rates compared with White parents (OR, 0.35; 95% CI, 0.17-0.73). Parents who reported their infant's medical condition as more serious had higher enrollment rates (OR, 5.7; 95% CI, 2.0-16.3). Parents who enrolled their infant reported higher trust in medical researchers compared with parents who declined (mean [SD] difference, 5.3 [0.3-10.3]). There was no association between study comprehension and enrollment. Conclusions and relevance: In this study, the following factors were associated with neonatal clinical trial enrollment: demographic characteristics (ie, race/ethnicity, Medicaid status, and reported income), perception of illness, and trust in medical researchers. Future work to confirm these findings and explore the reasons behind them may lead to strategies for better engaging underrepresented groups in neonatal clinical research to reduce enrollment disparities
    corecore