1,244 research outputs found

    The fluid-fluid interface in a model colloid-polymer mixture: Application of grand canonical Monte Carlo to asymmetric binary mixtures

    Full text link
    We present a Monte Carlo method to simulate asymmetric binary mixtures in the grand canonical ensemble. The method is used to study the colloid-polymer model of Asakura and Oosawa. We determine the phase diagram of the fluid-fluid unmixing transition and the interfacial tension, both at high polymer density and close to the critical point. We also present density profiles in the two-phase region. The results are compared to predictions of a recent density functional theory.Comment: 4 pages, 4 figure

    Self-assembly and crystallisation of indented colloids at a planar wall

    Get PDF
    We report experimental and simulation studies of the structure of a monolayer of indented ("lock and key") colloids, on a planar surface. On adding a non-absorbing polymer with prescribed radius and volume fraction, depletion interactions are induced between the colloids, with controlled range and strength. For spherical particles, this leads to crystallisation, but the indented colloids crystallise less easily than spheres, in both simulation and experiment. Nevertheless, simulations show that indented colloids do form plastic (rotator) crystals. We discuss the conditions under which this occurs, and the possibilities of lower-symmetry crystal states. We also comment on the kinetic accessibility of these states.Comment: 8 pages, 8 figure

    Phase behavior of a fluid with competing attractive and repulsive interactions

    Get PDF
    Fluids in which the interparticle potential has a hard core, is attractive at moderate separations, and repulsive at greater separations are known to exhibit novel phase behavior, including stable inhomogeneous phases. Here we report a joint simulation and theoretical study of such a fluid, focusing on the relationship between the liquid-vapor transition line and any new phases. The phase diagram is studied as a function of the amplitude of the attraction for a certain fixed amplitude of the long ranged repulsion. We find that the effect of the repulsion is to substitute the liquid-vapor critical point and a portion of the associated liquid-vapor transition line, by two first order transitions. One of these transitions separates the vapor from a fluid of spherical liquidlike clusters; the other separates the liquid from a fluid of spherical voids. At low temperature, the two transition lines intersect one another and a vapor-liquid transition line at a triple point. While most integral equation theories are unable to describe the new phase transitions, the Percus Yevick approximation does succeed in capturing the vapor-cluster transition, as well as aspects of the structure of the cluster fluid, in reasonable agreement with the simulation results.Comment: 15 pages, 20 figure

    Free energies of crystalline solids: a lattice-switch Monte Carlo method

    Full text link
    We present a method for the direct evaluation of the difference between the free energies of two crystalline structures, of different symmetry. The method rests on a Monte Carlo procedure which allows one to sample along a path, through atomic-displacement-space, leading from one structure to the other by way of an intervening transformation that switches one set of lattice vectors for another. The configurations of both structures can thus be sampled within a single Monte Carlo process, and the difference between their free energies evaluated directly from the ratio of the measured probabilities of each. The method is used to determine the difference between the free energies of the fcc and hcp crystalline phases of a system of hard spheres.Comment: 5 pages Revtex, 3 figure

    The Lennard-Jones-Devonshire cell model revisited

    Full text link
    We reanalyse the cell theory of Lennard-Jones and Devonshire and find that in addition to the critical point originally reported for the 12-6 potential (and widely quoted in standard textbooks), the model exhibits a further critical point. We show that the latter is actually a more appropriate candidate for liquid-gas criticality than the original critical point.Comment: 5 pages, 3 figures, submitted to Mol. Phy

    Interfacial tension of the isotropic--nematic interface in suspensions of soft spherocylinders

    Get PDF
    The isotropic to nematic transition in a system of soft spherocylinders is studied by means of grand canonical Monte Carlo simulations. The probability distribution of the particle density is used to determine the coexistence density of the isotropic and the nematic phases. The distributions are also used to compute the interfacial tension of the isotropic--nematic interface, including an analysis of finite size effects. Our results confirm that the Onsager limit is not recovered until for very large elongation, exceeding at least L/D=40, with L the spherocylinder length and D the diameter. For smaller elongation, we find that the interfacial tension increases with increasing L/D, in agreement with theoretical predictions.Comment: 8 pages, 7 figures, and also 1 tabl

    Wetting of a symmetrical binary fluid mixture on a wall

    Full text link
    We study the wetting behaviour of a symmetrical binary fluid below the demixing temperature at a non-selective attractive wall. Although it demixes in the bulk, a sufficiently thin liquid film remains mixed. On approaching liquid/vapour coexistence, however, the thickness of the liquid film increases and it may demix and then wet the substrate. We show that the wetting properties are determined by an interplay of the two length scales related to the density and the composition fluctuations. The problem is analysed within the framework of a generic two component Ginzburg-Landau functional (appropriate for systems with short-ranged interactions). This functional is minimized both numerically and analytically within a piecewise parabolic potential approximation. A number of novel surface transitions are found, including first order demixing and prewetting, continuous demixing, a tricritical point connecting the two regimes, or a critical end point beyond which the prewetting line separates a strongly and a weakly demixed film. Our results are supported by detailed Monte Carlo simulations of a symmetrical binary Lennard-Jones fluid at an attractive wall.Comment: submitted to Phys. Rev.

    Critical phenomena in colloid-polymer mixtures: interfacial tension, order parameter, susceptibility and coexistence diameter

    Full text link
    The critical behavior of a model colloid-polymer mixture, the so-called AO model, is studied using computer simulations and finite size scaling techniques. Investigated are the interfacial tension, the order parameter, the susceptibility and the coexistence diameter. Our results clearly show that the interfacial tension vanishes at the critical point with exponent 2\nu ~ 1.26. This is in good agreement with the 3D Ising exponent. Also calculated are critical amplitude ratios, which are shown to be compatible with the corresponding 3D Ising values. We additionally identify a number of subtleties that are encountered when finite size scaling is applied to the AO model. In particular, we find that the finite size extrapolation of the interfacial tension is most consistent when logarithmic size dependences are ignored. This finding is in agreement with the work of Berg et al.[Phys. Rev. B, V47 P497 (1993)]Comment: 13 pages, 16 figure

    Are critical finite-size scaling functions calculable from knowledge of an appropriate critical exponent?

    Full text link
    Critical finite-size scaling functions for the order parameter distribution of the two and three dimensional Ising model are investigated. Within a recently introduced classification theory of phase transitions, the universal part of the critical finite-size scaling functions has been derived by employing a scaling limit that differs from the traditional finite-size scaling limit. In this paper the analytical predictions are compared with Monte Carlo simulations. We find good agreement between the analytical expression and the simulation results. The agreement is consistent with the possibility that the functional form of the critical finite-size scaling function for the order parameter distribution is determined uniquely by only a few universal parameters, most notably the equation of state exponent.Comment: 11 pages postscript, plus 2 separate postscript figures, all as uuencoded gzipped tar file. To appear in J. Phys. A

    Influence of polydispersity on the critical parameters of an effective potential model for asymmetric hard sphere mixtures

    Full text link
    We report a Monte Carlo simulation study of the properties of highly asymmetric binary hard sphere mixtures. This system is treated within an effective fluid approximation in which the large particles interact through a depletion potential (R. Roth {\em et al}, Phys. Rev. E{\bf 62} 5360 (2000)) designed to capture the effects of a virtual sea of small particles. We generalize this depletion potential to include the effects of explicit size dispersity in the large particles and consider the case in which the particle diameters are distributed according to a Schulz form having degree of polydispersity 14%. The resulting alteration (with respect to the monodisperse limit) of the metastable fluid-fluid critical point parameters is determined for two values of the ratio of the diameters of the small and large particles: q≡σs/σˉb=0.1q\equiv\sigma_s/\bar\sigma_b=0.1 and q=0.05q=0.05. We find that inclusion of polydispersity moves the critical point to lower reservoir volume fractions of the small particles and high volume fractions of the large ones. The estimated critical point parameters are found to be in good agreement with those predicted by a generalized corresponding states argument which provides a link to the known critical adhesion parameter of the adhesive hard sphere model. Finite-size scaling estimates of the cluster percolation line in the one phase fluid region indicate that inclusion of polydispersity moves the critical point deeper into the percolating regime. This suggests that phase separation is more likely to be preempted by dynamical arrest in polydisperse systems.Comment: 11 pages, 10 figure
    • …
    corecore