194 research outputs found

    Relativistic electron beam propagation in the Earth's atmosphere: Modeling results

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95662/1/grl8999.pd

    Improved Modeling of System Response in List Mode EM Reconstruction of Compton Scatter Camera Images

    Full text link
    An improved List Mode EM method for reconstructing Compton scattering camera images has been developed. First, an approximate method for computation of the spatial variation in the detector sensitivity has been derived and validated by Monte Carlo computation. A technique for estimating the relative weight of system matrix coefficients for each gamma in the list has also been employed, as has a method for determining the relative probabilities of emission having come from pixels tallied in each list-mode back-projection. Finally, a technique has been developed for modeling the effects of Doppler broadening and finite detector energy resolution on the relative weights for pixels neighbor to those intersected by the back-projection, based on values for the FWHM of the spread in the cone angle computed by Monte Carlo. Memory issues typically associated with list mode reconstruction are circumvented by storing only a list of the pixels intersected by the back-projections, and computing the weights of the neighboring pixels at each iteration step. Reconstructions have been performed on experimental data for both point and distributed sourcesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86026/1/Fessler77.pd

    Biological-Effect Modeling of Radioimmunotherapy for Non-Hodgkins Lymphoma: Determination of Model Parameters

    Full text link
    Treatment with Tositumomab and 131I tositumomab anti-CD20 radioimmunotherapy (Bexxar) yields a nonradioactive antibody antitumor response (the so-called cold effect) and a radiation response. Numerical parameter determination by least-squares (LS) fitting was implemented for more accurate parameter estimates in equivalent biological-effect calculations. Methods: One hundred thirty-two tumors in 37 patients were followed using five or six SPECT/CT studies per patient, three each (typical) post-tracer (0.2 GBq) and post-therapy (?3 GBq) injections. The SPECT/CT data were used to calculate position- and time-dependent dose rates and antibody concentrations for each tumor. CT-defined tumor volumes were used to track tumor volume changes. Combined biological-effect and cell-clearance models were fit to tumor volume changes. Optimized parameter values determined using LS fitting were compared to previous fitted values that were determined by matching calculated to measured tumor volume changes using visual assessment. Absorbed dose sensitivity (α) and cold-effect sensitivity (?p) parameters were the primary fitted parameters, yielding equivalent biological-effect (E) values. Results: Individual parameter uncertainties were approximately 10% and 30% for α and ?p, respectively. LS versus previously fit parameter values were highly correlated, although the averaged α value decreased and the averaged ?p value increased for the LS fits compared to the previous fits. Correlation of E with 2-month tumor shrinkage data was similar for the two fitting techniques. The LS fitting yielded improved fit quality and likely improved parameter estimation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140326/1/cbr.2012.1467.pd

    A vectorized Monte Carlo detector simulation program for electromagnetic interactions

    Full text link
    MC4 is a detector simulation program combining a vectorized ray-tracing algorithm with a vectorized version of the electromagnetic interaction routines from GEANT3. The implementation of ray tracing is able to represent moderately complex geometries such as single calorimeter modules or test-beam situations. Results from MC4 are compared with EGS4 simulations and with experimental results. Timing results are given for scalar machines and on a vector supercomputer. Production applications and applications to future versions of the GEANT code are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27643/1/0000019.pd

    Silicon detector for a Compton Camera in Nuclear Medical Imaging

    Get PDF
    Electronically collimated gamma ca\-me\-ras based on Com\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to 10510^5~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium (4399m^{\rm 99m}_{43}Tc) and americium (95241^{241}_{95}Am) were acquired with an energy resolution of 2.45~keV FWHM for the 140.5~keV photo-absorption line of 4399m^{\rm 99m}_{43}Tc. For all pads the discrimination threshold in the trigger chip was between (15 and 25)~keV

    Single-scatter Monte Carlo compared to condensed history results for low energy electrons

    Full text link
    A Monte Carlo code has been developed to simulate individual electron interactions. The code has been instrumental in determining the range of validity for the widely used condensed history method. This task was accomplished by isolating and testing the condensed history assumptions. The results show that the condensed history method fails for low energy electron transport due to inaccuracies in energy loss and spatial positioning.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29795/1/0000141.pd

    Experimental validation of the DPM Monte Carlo code using minimally scattered electron beams in heterogeneous media

    Full text link
    A comprehensive set of measurements and calculations has been conducted to investigate the accuracy of the Dose Planning Method (DPM) Monte Carlo code for electron beam dose calculations in heterogeneous media. Measurements were made using 10 MeV and 50 MeV minimally scattered, uncollimated electron beams from a racetrack microtron. Source distributions for the Monte Carlo calculations were reconstructed from in-air ion chamber scans and then benchmarked against measurements in a homogeneous water phantom. The in-air spatial distributions were found to have FWHM of 4.7 cm and 1.3 cm, at 100 cm from the source, for the 10 MeV and 50 MeV beams respectively. Energy spectra for the electron beams were determined by simulating the components of the microtron treatment head using the code MCNP4B. Profile measurements were made using an ion chamber in a water phantom with slabs of lung or bone-equivalent materials submerged at various depths. DPM calculations are, on average, within 2% agreement with measurement for all geometries except for the 50 MeV incident on a 6 cm lung-equivalent slab. Measurements using approximately monoenergetic, 50 MeV, ‘pencil-beam’-type electrons in heterogeneous media provide conditions for maximum electronic disequilibrium and hence present a stringent test of the code's electron transport physics; the agreement noted between calculation and measurement illustrates that the DPM code is capable of accurate dose calculation even under such conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48972/2/m21101.pd

    Use of Integrated SPECT/CT Imaging for Tumor Dosimetry in I-131 Radioimmunotherapy: A Pilot Patient Study

    Full text link
    Abstract Integrated systems combining functional (single-photon emission computed tomography; SPECT) imaging with anatomic (computed tomography; CT) imaging have the potential to greatly improve the accuracy of dose estimation in radionuclide therapy. In this article, we present the methodology for highly patient-specific tumor dosimetry by utilizing such a system and apply it to a pilot study of 4 follicular lymphoma patients treated with I-131 tositumomab. SPECT quantification included three-dimensional ordered-subset expectation-maximization reconstruction and CT-defined tumor outlines at each time point. SPECT/CT images from multiple time points were coupled to a Monte Carlo algorithm to calculate a mean tumor dose that incorporated measured changes in tumor volume. The tumor shrinkage, defined as the difference between volumes drawn on the first and last CT scan (a typical time period of 15 days) was in the range 5%-49%. The therapy-delivered mean tumor-absorbed dose was in the range 146-334cGy. For comparison, the therapy dose was also calculated by assuming a static volume from the initial CT and was found to underestimate this dose by up to 47%. The agreement between tracer-predicted and therapy-delivered tumor-absorbed dose was in the range 7%-21%. In summary, malignant lymphomas can have dramatic tumor regression within days of treatment, and advanced imaging methods allow for a highly patient-specific tumor-dosimetry calculation that accounts for this regression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78152/1/cbr.2008.0568.pd

    Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering

    Get PDF
    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product

    Detecting small low emission radiating sources

    Full text link
    The article addresses the possibility of robust detection of geometrically small, low emission sources on a significantly stronger background. This problem is important for homeland security. A technique of detecting such sources using Compton type cameras is developed, which is shown on numerical examples to have high sensitivity and specificity and also allows to assign confidence probabilities of the detection. 2D case is considered in detail
    • …
    corecore