89 research outputs found

    An exploration of the option space in student design projects for uncertainty and sensitivity analysis with performance simulation

    Get PDF
    This paper describes research conducted to gather empirical evidence on extent, character and content of the option space in building design projects, from the perspective of a climate engineer using building performance simulation for concept evaluation. The goal is to support uncertainty analysis and sensitivity analysis integrated to building performance simulation (BPS) tools. The integration will need to assist design rather than automate design, allowing a spontaneous, creative and flexible process that acknowledges the expertise of the design team members. The paper investigates the emergent option space and its inherent uncertainties of an artificial setting (student design studios). The preliminary findings provide empirical evidence of the high variability of the option space that can be subjected to uncertainty analysis and sensitivity analysis

    Environmental monitoring : phase 5 final report (April 2019 - March 2020)

    Get PDF
    This report presents the results and interpretation for Phase 5 of an integrated environmental monitoring programme that is being undertaken around two proposed shale gas sites in England – Preston New Road, Lancashire and Kirby Misperton, North Yorkshire. The report should be read in conjunction with previous reports freely available through the project website1 . These provide additional background to the project, presentation of earlier results and the rationale for establishment of the different elements of the monitoring programme

    Environmental monitoring : phase 4 final report (April 2018 - March 2019)

    Get PDF
    This report describes the results of activities carried out as part of the Environmental Monitoring Project (EMP) led by the British Geological Survey (BGS) in areas around two shale gas sites in England – Kirby Misperton (Vale of Pickering, North Yorkshire) and Preston New Road (Fylde, Lancashire). It focuses on the monitoring undertaken during the period April 2018–March 2019 but also considers this in the context of earlier monitoring results that have been covered in reports for earlier phases of the project (Phases I–IV) 2 . The EMP project is a multi-partner project involving BGS together with Public Health England (PHE), University of Birmingham, University of Bristol, University of Manchester, Royal Holloway University of London (RHUL) and University of York. The work has been enabled by funding from a combination of the BGS National Capability programme, a grant awarded by the UK Government’s Department for Business Energy & Industrial Strategy (BEIS) and additional benefit-in-kind contributions from all partners. The project comprises the comprehensive monitoring of different environment compartments and properties at and around the two shale-gas sites. The component parts of the EMP are all of significance when considering environmental and human health risks associated with shale gas development. Included are seismicity, ground motion, water (groundwater and surface water), soil gas, greenhouse gases, air quality, and radon. The monitoring started before hydraulic fracturing had taken place at the two locations, and so the results obtained before the initiation of operations at the shale-gas sites represent baseline conditions. It is important to characterise adequately the baseline conditions so that any future changes caused by shale gas operations, including hydraulic fracturing, can be identified. This is also the case for any other new activities that may impact those compartments of the environment being monitored as part of the project. In the period October 2018–December 2018, an initial phase of hydraulic fracturing took place at the Preston New Road (PNR) shale-gas site (shale gas well PNR1-z) in Lancashire. This was followed by a period of flow testing of the well to assess its performance (to end of January 2019). The project team continued monitoring during these various activities and several environmental effects were observed. These are summarised below and described in more detail within the report. The initiation of operations at the shale-gas site signified the end of baseline monitoring. At the Kirby Misperton site (KMA), approval has not yet been granted for hydraulic fracturing of the shale gas well (KM8), and so no associated operations have taken place during the period covered by this report. The effects on air quality arising from the mobilisation of equipment in anticipation of hydraulic fracturing operations starting was reported in the Phase III report, and in a recently published paper3 . Following demobilisation of the equipment and its removal from the site, conditions returned to baseline and the on-going monitoring (reported in this report) is effectively a continuation of baseline monitoring

    Isotopic signatures of methane emissions from tropical fires, agriculture and wetlands: the MOYA and ZWAMPS flights

    Get PDF
    We report methane isotopologue data from aircraft and ground measurements in Africa and South America. Aircraft campaigns sampled strong methane fluxes over tropical papyrus wetlands in the Nile, Congo and Zambezi basins, herbaceous wetlands in Bolivian southern Amazonia, and over fires in African woodland, cropland and savannah grassland. Measured methane δ13CCH4 isotopic signatures were in the range −55 to −49‰ for emissions from equatorial Nile wetlands and agricultural areas, but widely −60 ± 1‰ from Upper Congo and Zambezi wetlands. Very similar δ13CCH4 signatures were measured over the Amazonian wetlands of NE Bolivia (around −59‰) and the overall δ13CCH4 signature from outer tropical wetlands in the southern Upper Congo and Upper Amazon drainage plotted together was −59 ± 2‰. These results were more negative than expected. For African cattle, δ13CCH4 values were around −60 to −50‰. Isotopic ratios in methane emitted by tropical fires depended on the C3 : C4 ratio of the biomass fuel. In smoke from tropical C3 dry forest fires in Senegal, δ13CCH4 values were around −28‰. By contrast, African C4 tropical grass fire δ13CCH4 values were −16 to −12‰. Methane from urban landfills in Zambia and Zimbabwe, which have frequent waste fires, had δ13CCH4 around −37 to −36‰. These new isotopic values help improve isotopic constraints on global methane budget models because atmospheric δ13CCH4 values predicted by global atmospheric models are highly sensitive to the δ13CCH4 isotopic signatures applied to tropical wetland emissions. Field and aircraft campaigns also observed widespread regional smoke pollution over Africa, in both the wet and dry seasons, and large urban pollution plumes. The work highlights the need to understand tropical greenhouse gas emissions in order to meet the goals of the UNFCCC Paris Agreement, and to help reduce air pollution over wide regions of Africa

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    An investigation of the option space in conceptual building design for advanced building simulation

    Get PDF
    This article describes research conducted to gather empirical evidence on size, character and content of the option space in building design projects. This option space is the key starting point for the work of any climate engineer using building performance simulation who is supporting the design process. The underlying goal is to strengthen the role of advanced computing in building design, especially in the early conceptual stage, through a better integration of building performance simulation tools augmented with uncertainty analysis and sensitivity analysis. Better integration will need to assist design rather than automate design, allowing a spontaneous, creative and flexible process that acknowledges the expertise of the design team members. This research investigates and contrasts emergent option spaces and their inherent uncertainties in an artificial setting (student design studios) and in real-life scenarios (commercial design project case studies). The findings provide empirical evidence of the high variability of the option space that can be subjected to uncertainty analysis and sensitivity analysis
    • …
    corecore