62 research outputs found

    Functional image-based radiotherapy planning for non-small cell lung cancer: a simulation study

    Get PDF
    Background and purpose: To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging (He-3-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC). Material and methods: Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving >= 20 Gy (V-20), and the other to minimise only the functional lung volume receiving >= 20 Gy (FV20). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V-PTV95/FV20) were compared between anatomical and functional plans using the Wilcoxon signed ranks test. Results: Compared to anatomical IMRT plans, functional planning reduced FV20 (median 2.7%, range 0.6-3.5%, p = 0.02), and total lung V-20 (median 1.5%, 0.5-2.7%, p = 0.02), with a small reduction in mean functional lung dose (median 0.4 Gy, 0-0.7 Gy, p = 0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p = 0.02). Conclusions: Statistically significant reductions in FV20, V-20 and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or He-3-MRI. (C) 2009 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 93 (2009) 32-3

    Responsibility of neurosurgeons in cooperation with clinical neuropsychologists to accomplish full social re-entry and good HRQoL for patients following acute brain damage

    Get PDF
    Objectives: Physical neurologic and neuropsychological rehabilitation has an old tradition in Europe. Clinical recovery of physical neurological impairments following acute brain damaged do not guarantee successful social re-entry when overlooking long-lasting mental – cognitive, behavioural deficits after clinical demission. Problems in emotional adjustment are long-lasting and hinder social re-entry.Patients and methods: Transdisciplinary early neurorehabilitation is based on careful physical and mental - cognitive diagnostics for an individualized therapeutic intervention, when neuropsychology is essential in patients with brain lesions. The role of individually planned early neuro-psychotherapy is underestimated when dealing with patients catastrophic reactions as first described by Kurt Goldstein. This was exemplarily demonstrated in a patient with severe higher cortical functioning disturbances after acute intracerebral haemorrhage and coma, followed by secondary hydrocephalus and major emotional adjustment behavioural disturbances.Results: The 65 years old business man, who suffered from persisting complex mental-cognitive, behavioural, mood and emotional disturbances recovered full social competence due to professional neuropsychological neuropsychiatric treatment. Discussion: Early catastrophic reactions and fear of loss of self-identity are important key issues in the emotional adjustment after brain damaged. Further research is needed to explaining the links between loss of self-esteem, self-identity and the development of depression. Attention needs to be focused on a recovery beyond functional outcome. Conclusion: Neurosurgical-neuropsychological rehabilitation is a method to reconstruct lives within a social context

    Comparison of CT ventilation imaging and hyperpolarised gas MRI: effects of breathing manoeuvre.

    Get PDF
    Image registration of lung CT images acquired at different inflation levels has been proposed as a surrogate method to map lung 'ventilation'. Prior to clinical use, it is important to understand how this technique compares with direct ventilation imaging modalities such as hyperpolarised gas MRI. However, variations in lung inflation level have been shown to affect regional ventilation distributions. Therefore, the aim of this study was to evaluate the impact of lung inflation levels when comparing CT ventilation imaging to ventilation from 3He-MRI.
 
 7 asthma patients underwent breath-hold CT at total lung capacity (TLC) and functional residual capacity (FRC). 3He-MRI and a same-breath 1H-MRI were acquired at FRC+1L and TLC. Percentage ventilated volumes (%VVs) were calculated for FRC+1L and TLC 3He-MRI. TLC-CT and registered FRC-CT were used to compute a surrogate ventilation map from voxel-wise intensity differences in Hounsfield unit values, which was thresholded at the 10th and 20th percentiles. For direct comparison of CT and 3He-MRI ventilation, FRC+1L and TLC 3He-MRI were registered to TLC-CT indirectly via the corresponding same-breath 1H-MRI data. For 3He-MRI and CT ventilation comparison, Dice similarity coefficients (DSCs) between the binary segmentations were computed.
 
 The median (range) of %VVs for FRC+1L and TLC 3He-MRI were 90.5 (54.9-93.6) and 91.8 (67.8-96.2), respectively (p=0.018). For MRI versus CT ventilation comparison, statistically significant improvements in DSCs were observed for TLC 3He MRI when compared with FRC+1L, with median (range) values of 0.93 (0.86-0.93) and 0.86 (0.68-0.92), respectively (p=0.017), for the 10-100th percentile and 0.87 (0.83-0.88) and 0.81 (0.66-0.87), respectively (p=0.027), for the 20-100th percentile.
 
 Correlation of CT ventilation imaging and hyperpolarised gas MRI is sensitive to lung inflation level. For ventilation maps derived from CT acquired at FRC and TLC, a higher correlation with gas ventilation MRI can be achieved if the MRI is acquired at TLC. &#13

    A method for quantitative analysis of regional lung ventilation using deformable image registration of CT and hybrid hyperpolarized gas/H-1 MRI

    Get PDF
    Hyperpolarized gas magnetic resonance imaging (MRI) generates highly detailed maps of lung ventilation and physiological function while CT provides corresponding anatomical and structural information. Fusion of such complementary images enables quantitative analysis of pulmonary structure-function. However, direct image registration of hyperpolarized gas MRI to CT is problematic, particularly in lungs whose boundaries are difficult to delineate due to ventilation heterogeneity. This study presents a novel indirect method of registering hyperpolarized gas MRI to CT utilizing 1H-structural MR images that are acquired in the same breath-hold as the gas MRI. The feasibility of using this technique for regional quantification of ventilation of specific pulmonary structures is demonstrated for the lobes. The direct and indirect methods of hyperpolarized gas MRI to CT image registration were compared using lung images from 15 asthma patients. Both affine and diffeomorphic image transformations were implemented. Registration accuracy was evaluated using the target registration error (TRE) of anatomical landmarks identified on 1H MRI and CT. The Wilcoxon signed-rank test was used to test statistical significance. For the affine transformation, the indirect method of image registration was significantly more accurate than the direct method (TRE = 14.7  ±  3.2 versus 19.6  ±  12.7 mm, p = 0.036). Using a deformable transformation, the indirect method was also more accurate than the direct method (TRE = 13.5  ±  3.3 versus 20.4  ±  12.8 mm, p = 0.006). Accurate image registration is critical for quantification of regional lung ventilation with hyperpolarized gas MRI within the anatomy delineated by CT. Automatic deformable image registration of hyperpolarized gas MRI to CT via same breath-hold 1H MRI is more accurate than direct registration. Potential applications include improved multi-modality image fusion, functionally weighted radiotherapy planning, and quantification of lobar ventilation in obstructive airways disease

    Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Get PDF
    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging ((3)He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment (3)He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised (3)He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of (3)He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3%; p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised (3)He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields

    Comparison of 3He and129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T

    Get PDF
    BACKGROUND: To support translational lung MRI research with hyperpolarized129Xe gas, comprehensive evaluation of derived quantitative lung function measures against established measures from3He MRI is required. Few comparative studies have been performed to date, only at 3T, and multisession repeatability of129Xe functional metrics have not been reported. PURPOSE/HYPOTHESIS: To compare hyperpolarized129Xe and3He MRI-derived quantitative metrics of lung ventilation and microstructure, and their repeatability, at 1.5T. STUDY TYPE: Retrospective. POPULATION: Fourteen healthy nonsmokers (HN), five exsmokers (ES), five patients with chronic obstructive pulmonary disease (COPD), and 16 patients with nonsmall-cell lung cancer (NSCLC). FIELD STRENGTH/SEQUENCE: 1.5T. NSCLC, COPD patients and selected HN subjects underwent 3D balanced steady-state free-precession lung ventilation MRI using both3He and129Xe. Selected HN, all ES, and COPD patients underwent 2D multislice spoiled gradient-echo diffusion-weighted lung MRI using both hyperpolarized gas nuclei. ASSESSMENT: Ventilated volume percentages (VV%) and mean apparent diffusion coefficients (ADC) were derived from imaging. COPD patients performed the whole MR protocol in four separate scan sessions to assess repeatability. Same-day pulmonary function tests were performed. STATISTICAL TESTS: Intermetric correlations: Spearman's coefficient. Intergroup/internuclei differences: analysis of variance / Wilcoxon's signed rank. Repeatability: coefficient of variation (CV), intraclass correlation (ICC) coefficient. RESULTS: A significant positive correlation between3He and129Xe VV% was observed (r = 0.860, P < 0.001). VV% was larger for3He than129Xe (P = 0.001); average bias, 8.79%. A strong correlation between mean3He and129Xe ADC was obtained (r = 0.922, P < 0.001). MR parameters exhibited good correlations with pulmonary function tests. In COPD patients, mean CV of3He and129Xe VV% was 4.08% and 13.01%, respectively, with ICC coefficients of 0.541 (P = 0.061) and 0.458 (P = 0.095). Mean3He and129Xe ADC values were highly repeatable (mean CV: 2.98%, 2.77%, respectively; ICC: 0.995, P < 0.001; 0.936, P < 0.001). DATA CONCLUSION:129Xe lung MRI provides near-equivalent information to3He for quantitative lung ventilation and microstructural MRI at 1.5T. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage

    Spatial comparison of CT-based surrogates of lung ventilation with hyperpolarized Helium-3 and Xenon-129 gas MRI in patients undergoing radiation therapy

    Get PDF
    Purpose To develop and apply an image acquisition and analysis strategy for spatial comparison of CT-ventilation images with hyperpolarized gas MRI. Methods 11 lung cancer patients underwent 129Xe and 3He ventilation MRI and co-registered 1H anatomical MRI. Expiratory and inspiratory breath-hold CTs were used for deformable image registration and calculation of three CT-ventilation metrics: Hounsfield unit (CTHU), Jacobian (CTJac) and specific gas volume change (CTSGV). Inspiration CT and hyperpolarized gas ventilation MRI were registered via same-breath anatomical 1H-MRI. Voxel-wise Spearman correlation coefficients were calculated between each CT-ventilation image and its corresponding 3He/129Xe-MRI, and for the mean values in regions of interest (ROIs) ranging from fine to coarse in-plane dimensions of 5x5, 10x10, 15x15 and 20x20, located within the lungs as defined by the same-breath 1H-MRI lung mask. Correlation of 3He and 129Xe-MRI was also assessed. Results Spatial correlation of CT-ventilation against 3He/129Xe-MRI increased with ROI size. For example, for CTHU, mean±SD Spearman coefficients were 0.37±0.19/0.33±0.17 at the voxel-level and 0.52±0.20/0.51±0.18 for 20x20 ROIs, respectively. Correlations were stronger for CTHU than for CTJac or CTSGV. Correlation of 3He with 129Xe-MRI was consistently higher than either gas against CT-ventilation maps over all ROIs (p<0.05). No significant differences were observed between CT-ventilation vs 3He-MRI and CT-ventilation vs 129Xe-MRI. Conclusion Comparison of ventilation-related measures from CT and registered hyperpolarized gas MRI is feasible at a voxel level using a dedicated acquisition and analysis protocol. Moderate correlation between CT-ventilation and MRI exists at a regional level. Correlation between MRI and CT is significantly less than between 3He and 129Xe-MRI, suggesting that CT-ventilation surrogate measures may not be measuring lung ventilation alone

    RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies

    Get PDF
    Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • …
    corecore