195 research outputs found

    LPS from P. gingivalis

    Get PDF
    Objective. Oral inflammatory pathologies are linked to increased oxidative stress, thereby partly explaining their relevance in the etiology of systemic disorders. The purpose of this work was to determine the degree to which LPS from Porphyromonas gingivalis, the primary pathogen related to oral inflammation, altered gingival mitochondrial function and reactive oxygen species generation. Methods. Human gingival fibroblast (HGF-1) cells were treated with lipopolysaccharide of P. gingivalis. Mitochondrial function was determined via high-resolution respirometry. Results. LPS-treated HGF-1 cells had significantly higher mitochondrial complex IV and higher rates of mitochondrial respiration. However, this failed to translate into greater ATP production, as ATP production was paradoxically diminished with LPS treatment. Nevertheless, production of the reactive H2O2 was elevated with LPS treatment. Conclusions. LPS elicits an increase in gingival cell mitochondria content, with a subsequent increase in reactive oxygen species production (i.e., H2O2), despite a paradoxical reduction in ATP generation. These findings provide an insight into the nature of oxidative stress in oral inflammatory pathologies

    Compendium of Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Get PDF
    Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices

    N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E., Kwiatkowski, B., Kicklighter, D., Plotkin, A., Genet, H., Nippert, J., O’Keefe, K., Perakis, S., Porder, S., Roley, S., Ruess, R., Thompson, J., Wieder, W., Wilcox, K., & Yanai, R. N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications, (2022): e2684, https://doi.org/10.1002/eap.2684.We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water-use efficiency with elevated CO2 and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2 and climate change.This material is based on work supported by the National Science Foundation under Grant No. 1651722 as well through the NSF LTER Program 1637459, 2220863 (ARC), 1637686 (NWT), 1832042 (KBS), 2025849 (KNZ), 1636476 (BNZ), 1637685 (HBR), 1832210 (HFR), 2025755 (AND). We also acknowledge NSF grants 1637653 and 1754126 (INCyTE RCN), and DOE grant DESC0019037. We also acknowledge support through the USDA Forest Service Hubbard Brook Experimental Forest, North Woodstock, New Hampshie (USDA NIFA 2019-67019-29464) and Pacific Northwest Research Station, Corvallis, Oregon

    Compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Get PDF
    Total ionizing dose and displacement damage testing is performed to characterize and determine the feasibility of candidate electronics for NASA spacecraft and program use. AEROSPACE ENVIRONMENT

    Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and NASA Electronic Parts and Packaging Program

    Get PDF
    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose

    Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA Goddard Space Flight Center and Selected NASA Electronic Parts and Packaging Program

    Get PDF
    Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices

    Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin

    Get PDF
    The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while others demonstrated its potential in the treatment of hyperlipidemia and diabetes. However, naringenin suffers from low oral bioavailability critically limiting its clinical potential. In this study, we demonstrate that the solubility of naringenin is enhanced by complexation with β-cyclodextrin, an FDA approved excipient. Hydroxypropoyl-β-cyclodextrin (HPβCD), specifically, increased the solubility of naringenin by over 400-fold, and its transport across a Caco-2 model of the gut epithelium by 11-fold. Complexation of naringenin with HPβCD increased its plasma concentrations when fed to rats, with AUC values increasing by 7.4-fold and Cmax increasing 14.6-fold. Moreover, when the complex was administered just prior to a meal it decreased VLDL levels by 42% and increased the rate of glucose clearance by 64% compared to naringenin alone. These effects correlated with increased expression of the PPAR co-activator, PGC1α in both liver and skeletal muscle. Histology and blood chemistry analysis indicated this route of administration was not associated with damage to the intestine, kidney, or liver. These results suggest that the complexation of naringenin with HPβCD is a viable option for the oral delivery of naringenin as a therapeutic entity with applications in the treatment of dyslipidemia, diabetes, and HCV infection.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (K01DK080241)Harvard Clinical Nutrition Research Center (P30-DK040561)European Research Council (Starting Grant (TMIHCV 242699))Massachusetts General Hospital (BioMEMS Resource Center (P41 EB-002503))Alexander Silberman Institute of Life Science

    Compendium of Single Event Effects, Total Ionizing Dose, and Displacement Damage for Candidate Spacecraft Electronics for NASA

    Get PDF
    We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion-induced single-event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). This paper is a summary of test results
    • …
    corecore