73 research outputs found

    Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder

    Get PDF
    The variability in phenotypic presentations and the lack of consistency of genetic associations in mental illnesses remain a major challenge in molecular psychiatry. Recently, it has become increasingly clear that altered promoter DNA methylation could play a critical role in mediating differential regulation of genes and in facilitating short-term adaptation in response to the environment. Here, we report the investigation of the differential activity of membrane-bound catechol-O-methyltransferase (MB - COMT) due to altered promoter methylation and the nature of the contribution of COMT Val158Met polymorphism as risk factors for schizophrenia and bipolar disorder by analyzing 115 post-mortem brain samples from the frontal lobe. These studies are the first to reveal that the MB - COMT promoter DNA is frequently hypomethylated in schizophrenia and bipolar disorder patients, compared with the controls (methylation rate: 26 and 29 versus 60; P = 0.004 and 0.008, respectively), particularly in the left frontal lobes (methylation rate: 29 and 30 versus 81; P = 0.003 and 0.002, respectively). Quantitative gene-expression analyses showed a corresponding increase in transcript levels of MB - COMT in schizophrenia and bipolar disorder patients compared with the controls (P = 0.02) with an accompanying inverse correlation between MB - COMT and DRD1 expression. Furthermore, there was a tendency for the enrichment of the Val allele of the COMT Val158Met polymorphism with MB - COMT hypomethylation in the patients. These findings suggest that MB - COMT over-expression due to promoter hypomethylation and/or hyperactive allele of COMT may increase dopamine degradation in the frontal lobe providing a molecular basis for the shared symptoms of schizophrenia and bipolar disorder. © Copyright 2006 Oxford University Press

    Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: A preliminary report

    Get PDF
    DNA methylation changes could provide a mechanism for DNA plasticity and dynamism for short-term adaptation, enabling a type of cell memory to register cellular history under different environmental conditions. Some environmental insults may also result in pathological methylation with corresponding alteration of gene expression patterns. Evidence from several studies has suggested that in schizophrenia and bipolar disorder, mRNA of the reelin gene (RELN), which encodes a protein necessary for neuronal migration, axonal branching, synaptogenesis, and cell signaling, is severely reduced in post-mortem brains. Therefore, we investigated the methylation status of the RELN promoter region in schizophrenic patients and normal controls as a potential mechanism for down regulation of its expression. Ten post-mortem frontal lobe brain samples from male schizophrenic patients and normal controls were obtained from the Harvard Brain Tissue Resources Center. DNA was extracted using a standard phenol-chloroform DNA extraction protocol. To evaluate differences between patients and controls, we applied methylation specific PCR (MSP) using primers localized to CpG islands flanking a potential cyclic AMP response element (CRE) and a stimulating protein-1 (SP1) binding site located in the promoter region. For each sample, DNA extraction, bisulfite treatment, and MSP were independently repeated at least four times to accurately determine the methylation status of the target region. Forty-three PCR trials were performed on the test and control samples. MSP analysis of the RELN promoter revealed an unmethylated signal in all reactions (43 of 43) using DNA from the frontal brain tissue, derived from either the schizophrenic patients or normal controls indicating that this region of the RELN promoter is predominantly unmethylated. However, we observed a distinct methylated signal in 73 of the trials (16 of 22) in schizophrenic patients compared with 24 (5 of 21) of controls. Thus, the hypermethylation of the CpG islands flanking a CRE and SP1 binding site observed at a significantly higher level (t = -5.07, P = 0.001) may provide a mechanism for the decreased RELN expression, frequently observed in post-mortem brains of schizophrenic patients. We also found an inverse relationship between the level of DNA methylation using MSP analysis and the expression of the RELN gene using semi-quantitative RT-PCR. Despite the small sample size, these studies indicate that promoter hypermethylation of the RELN gene could be a significant contributor in effecting epigenetic alterations and provides a molecular basis for the RELN gene hypoactivity in schizophrenia. Further studies with a larger sample set would be required to validate these preliminary observations. © 2005 Wiley-Liss, Inc

    Is the Sun a Magnet?

    Get PDF
    It has been argued (Gough and McIntyre in Nature394, 755, 1998) that the only way for the radiative interior of the Sun to be rotating uniformly in the face of the differentially rotating convection zone is for it to be pervaded by a large-scale magnetic field, a field which is responsible also for the thinness of the tachocline. It is most likely that this field is the predominantly dipolar residual component of a tangled primordial field that was present in the interstellar medium from which the Sun condensed (Braithwaite and Spruit in Nature431, 819, 2004), and that advection by the meridional flow in the tachocline has caused the dipole axis to be inclined from the axis of rotation by about 60∘ (Gough in Geophys. Astrophys. Fluid Dyn., 106, 429, 2012). It is suggested here that, notwithstanding its turbulent passage through the convection zone, a vestige of that field is transmitted by the solar wind to Earth, where it modulates the geomagnetic field in a periodic way. The field variation reflects the inner rotation of the Sun, and, unlike turbulent-dynamo-generated fields, must maintain phase. I report here a new look at an earlier analysis of the geomagnetic field by Svalgaard and Wilcox (Solar Phys.41, 461, 1975), which reveals evidence for appropriate phase coherence, thereby adding support to the tachocline theory

    The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): Illuminating the Functional Diversity of Eukaryotic Life in the Oceans through Transcriptome Sequencing

    Get PDF
    Microbial ecology is plagued by problems of an abstract nature. Cell sizes are so small and population sizes so large that both are virtually incomprehensible. Niches are so far from our everyday experience as to make their very definition elusive. Organisms that may be abundant and critical to our survival are little understood, seldom described and/or cultured, and sometimes yet to be even seen. One way to confront these problems is to use data of an even more abstract nature: molecular sequence data. Massive environmental nucleic acid sequencing, such as metagenomics or metatranscriptomics, promises functional analysis of microbial communities as a whole, without prior knowledge of which organisms are in the environment or exactly how they are interacting. But sequence-based ecological studies nearly always use a comparative approach, and that requires relevant reference sequences, which are an extremely limited resource when it comes to microbial eukaryotes

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Genetics and epigenetics in major psychiatric disorders: Dilemmas, achievements, applications, and future scope

    No full text
    No specific gene has been identified for any major psychiatric disorder, including schizophrenia, in spite of strong evidence supporting a genetic basis for these complex and devastating disorders. There are several likely reasons for this failure, ranging from poor study design with low statistical power to genetic mechanisms such as polygenic inheritance, epigenetic interactions, and pleiotropy. Most study designs currently in use are inadequate to uncover these mechanisms. However, to date, genetic studies have provided some valuable insight into the causes and potential therapies for psychiatric disorders. There is a growing body of evidence suggesting that the understanding of the genetic etiology of psychiatric illnesses, including schizophrenia, will be more successful with integrative approaches considering both genetic and epigenetic factors. For example, several genes including those encoding dopamine receptors (DRD2, DRD3, and DRD4), serotonin receptor 2A (HTR2A) and catechol-O- methyltransferase (COMT) have been implicated in the etiology of schizophrenia and related disorders through meta-analyses and large, multicenter studies. There is also growing evidence for the role of DRD1, NMDA receptor genes (GRIN1, GRIN2A, GRIN2B), brain-derived neurotrophic factor (BDNF), and dopamine transporter (SLC6A3) in both schizophrenia and bipolar disorder. Recent studies have indicated that epigenetic modification of reelin (RELN), BDNF, and the DRD2 promoters confer susceptibility to clinical psychiatric conditions. Pharmacologic therapy of psychiatric disorders will likely be more effective once the molecular pathogenesis is known. For example, the hypoactive alleles of DRD2 and the hyperactive alleles of COMT, which degrade the dopamine in the synaptic cleft, are associated with schizophrenia. It is likely that insufficient dopaminergic transmission in the frontal lobe plays a role in the development of negative symptoms associated with this disorder. Antipsychotic therapies with a partial dopamine D2 receptor agonist effect may be a plausible alternative to current therapies, and would be effective in symptom reduction in psychotic individuals. It is also possible that therapies employing dopamine D1/D2 receptor agonists or COMT inhibitors will be beneficial for patients with negative symptoms in schizophrenia and bipolar disorder. The complex etiology of schizophrenia, and other psychiatric disorders, warrants the consideration of both genetic and epigenetic systems and the careful design of experiments to illumine the genetic mechanisms conferring liability for these disorders and the benefit of existing and new therapies. © 2005 Adis Data Information BV. All rights reserved
    corecore