6,086 research outputs found

    Benefits of VTOL aircraft in offshore petroleum logistics support

    Get PDF
    The mission suitability and potential economic benefits of advanced VTOL aircraft were investigated for logistics support of petroleum operations in the North Sea and the Gulf of Mexico. Concepts such as the tilt rotor and lift/cruise fan are promising for future operations beyond 150 miles offshore, where their high cruise efficiency provides savings in trip time, fuel consumption, and capital investment. Depending upon mission requirements, the aircraft operating costs are reduced by as much as 20 percent to 50 percent from those of current helicopters

    Discrete ordinates-Monte Carlo coupling: A comparison of techniques in NERVA radiation analysis

    Get PDF
    In the radiation analysis of the NERVA nuclear rocket system, two-dimensional discrete ordinates calculations are sufficient to provide detail in the pressure vessel and reactor assembly. Other parts of the system, however, require three-dimensional Monte Carlo analyses. To use these two methods in a single analysis, a means of coupling was developed whereby the results of a discrete ordinates calculation can be used to produce source data for a Monte Carlo calculation. Several techniques for producing source detail were investigated. Results of calculations on the NERVA system are compared and limitations and advantages of the coupling techniques discussed

    Cost and schedule management on the quiet short-haul research aircraft project

    Get PDF
    The Quiet Short-Haul Research Aircraft (QSRA) Project, one of the largest aeronautical programs undertaken by NASA to date, achieved a significant cost underrun. This is attributed to numerous factors, not the least of which were the contractual arrangement and the system of cost and schedule management employed by the contractor. This paper summarizes that system and the methods used for cost/performance measurement by the contractor and by the NASA project management. Recommendations are made for the use of some of these concepts in particular for future programs of a similar nature

    Quiet propulsive lift for commuter airlines

    Get PDF
    The performance of STOL or RTOL aircraft and NASA's research program to provide options for future design and certification of quiet propulsive-life transports is described

    Vorticity interaction effects on blunt bodies

    Get PDF
    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory

    Transonic transport study: Economics

    Get PDF
    An economic analysis was performed to evaluate the impact of advanced materials, increased aerodynamic and structural efficiencies, and cruise speed on advanced transport aircraft designed for cruise Mach numbers of .90, .98, and 1.15. A detailed weight statement was generated by an aircraft synthesis computer program called TRANSYN-TST; these weights were used to estimate the cost to develop and manufacture a fleet of aircraft of each configuration. The direct and indirect operating costs were estimated for each aircraft, and an average return on investment was calculated for various operating conditions. There was very little difference between the operating economics of the aircraft designed for Mach numbers .90 and .98. The Mach number 1.15 aircraft was economically marginal in comparison but showed significant improvements with the application of carbon/epoxy structural material. However, the Mach .90 and Mach .98 aircraft are the most economically attractive vehicles in the study

    A study of the financial history of the U.S. scheduled airlines and the improvement of airline profitability through technology

    Get PDF
    The financial history of the U.S. scheduled airline industry was investigated to determine the causes of the erratic profit performance of the industry and to evaluate potential economic gains from technology advances of recent years. Operational and economic factors affecting past and future profitability of the industry are discussed, although no attempt was made to examine the profitability of individual carriers. The results of the study indicate that the profit erosion of the late 1960's and early 1970's was due more to excess capacity than to inadequate fare levels, but airline problems were severely compounded by the rapid fuel price escalation in 1974 and 1975. Near-term solutions to the airline financial problems depend upon the course of action by the industry and the CAB and the general economic health of the nation. For the longer term, the only acceptable alternative to continued fare increases is a reduction in unit operating costs through technological advance. The next generation of transports is expected to incorporate technologies developed under Government sponsorship in the 1960's and 1970's with significant improvements in fuel consumption and operating costs

    Upper-division Student Understanding of Coulomb's Law: Difficulties with Continuous Charge Distributions

    Full text link
    Utilizing the integral expression of Coulomb's Law to determine the electric potential from a continuous charge distribution is a canonical exercise in Electricity and Magnetism (E&M). In this study, we use both think-aloud interviews and responses to traditional exam questions to investigate student difficulties with this topic at the upper-division level. Leveraging a theoretical framework for the use of mathematics in physics, we discuss how students activate, construct, execute and reflect on the integral form of Coulomb's Law when solving problems with continuous charge distributions. We present evidence that junior-level E&M students have difficulty mapping physical systems onto the mathematical expression for the Coulomb potential. Common challenges include difficulty expressing the difference vector in appropriate coordinates as well as determining expressions for the differential charge element and limits of integration for a specific charge distribution. We discuss possible implications of these findings for future research directions and instructional strategies.Comment: 5 pages, 1 figure, 2 tables, accepted to 2012 PERC Proceeding

    ACER: A Framework on the Use of Mathematics in Upper-division Physics

    Full text link
    At the University of Colorado Boulder, as part of our broader efforts to transform middle- and upper-division physics courses, we research students' difficulties with particular concepts, methods, and tools in classical mechanics, electromagnetism, and quantum mechanics. Unsurprisingly, a number of difficulties are related to students' use of mathematical tools (e.g., approximation methods). Previous work has documented a number of challenges that students must overcome to use mathematical tools fluently in introductory physics (e.g., mapping meaning onto mathematical symbols). We have developed a theoretical framework to facilitate connecting students' difficulties to challenges with specific mathematical and physical concepts. In this paper, we motivate the need for this framework and demonstrate its utility for both researchers and course instructors by applying it to frame results from interview data on students' use of Taylor approximations.Comment: 10 pages, 1 figures, 2 tables, accepted to the 2012 PERC Proceeding
    corecore