8,169 research outputs found

    Structure Functions, Form Factors, and Lattice QCD

    Full text link
    We present results towards the calculation of the pion electric form factor and structure function on a 163×2416^3\times 24 lattice using charge overlap. By sacrificing Fourier transform information in two directions, it is seen that the longitudinal four point function can be extracted with reasonable error bars at low momentum.Comment: 3 pages (contribution to "Lattice 93"), UNIX SHAR file includes the LaTeX source and three encapsulated PS figures (which will print on appropriate drivers but can not be previewed), BU-HEP-93-0

    Deflated Iterative Methods for Linear Equations with Multiple Right-Hand Sides

    Full text link
    A new approach is discussed for solving large nonsymmetric systems of linear equations with multiple right-hand sides. The first system is solved with a deflated GMRES method that generates eigenvector information at the same time that the linear equations are solved. Subsequent systems are solved by combining restarted GMRES with a projection over the previously determined eigenvectors. This approach offers an alternative to block methods, and it can also be combined with a block method. It is useful when there are a limited number of small eigenvalues that slow the convergence. An example is given showing significant improvement for a problem from quantum chromodynamics. The second and subsequent right-hand sides are solved much quicker than without the deflation. This new approach is relatively simple to implement and is very efficient compared to other deflation methods.Comment: 13 pages, 5 figure

    The sensing and perception subsystem of the NASA research telerobot

    Get PDF
    A useful space telerobot for on-orbit assembly, maintenance, and repair tasks must have a sensing and perception subsystem which can provide the locations, orientations, and velocities of all relevant objects in the work environment. This function must be accomplished with sufficient speed and accuracy to permit effective grappling and manipulation. Appropriate symbolic names must be attached to each object for use by higher-level planning algorithms. Sensor data and inferences must be presented to the remote human operator in a way that is both comprehensible in ensuring safe autonomous operation and useful for direct teleoperation. Research at JPL toward these objectives is described

    The role of grain size and shape in the strengthening of dispersion hardened nickel alloys

    Get PDF
    Thermomechanical processing was used to develop various microsstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20CR-2ThO2, Ni-20Cr-10W-and Ni-20Cr-10W-2ThO2. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation, and substructure refinement was a much more potent means of strengthening than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength was the grain aspect ratio (grain length, L, divided by grain width, 1. The yield strength and creep strength increased linearly with increasing L/1

    Deflated BiCGStab for linear equations in QCD problems

    Get PDF
    The large systems of complex linear equations that are generated in QCD problems often have multiple right-hand sides (for multiple sources) and multiple shifts (for multiple masses). Deflated GMRES methods have previously been developed for solving multiple right-hand sides. Eigenvectors are generated during solution of the first right-hand side and used to speed up convergence for the other right-hand sides. Here we discuss deflating non-restarted methods such as BiCGStab. For effective deflation, both left and right eigenvectors are needed. Fortunately, with the Wilson matrix, left eigenvectors can be derived from the right eigenvectors. We demonstrate for difficult problems with kappa near kappa_c that deflating eigenvalues can significantly improve BiCGStab. We also will look at improving solution of twisted mass problems with multiple shifts. Projecting over previous solutions is an easy way to reduce the work needed.Comment: 7 pages, 4 figures, presented at the XXV International Symposium on Lattice Field Theory, 30 July - 4 August 2007, Regensburg, German
    corecore