45 research outputs found

    Studies of a weak polyampholyte at the air-buffer interface: The effect of varying pH and ionic strength

    Full text link
    We have carried out experiments to probe the static and dynamic interfacial properties of β\beta--casein monolayers spread at the air-buffer interface, and analysed these results in the context of models of weak polyampholytes. Measurements have been made systematically over a wide range of ionic strength and pH. In the semi-dilute regime of surface concentration a scaling exponent, which can be linked to the degree of chain swelling, is found. This shows that at pH close to the isoelectric point, the protein is compact. At pH away from the isoelectric pH the protein is extended. The transition between compact and extended states is continuous. As a function of increasing ionic strength, we observe swelling of the protein at the isoelectric pH but contraction of the protein at pH values away from it. These behaviours are typical of a those predicted theoretically for a weak polyampholyte. Dilational moduli measurements, made as a function of surface concentration exhibit maxima that are linked to the collapse of hydrophilic regions of the protein into the subphase. Based on this data we present a configuration map of the protein configuration in the monolayer. These findings are supported by strain (surface pressure) relaxation measurements and surface quasi-elastic light scattering (SQELS) measurements which suggest the existence of loops and tails in the subphase at higher surface concentrations.Comment: Submitted to J. Chem. Phy

    Analytical Model of Electron Backstreaming for Ion Thrusters

    No full text

    Experimental Evaluation of Sub-scale CBIO Ion Optics Systems

    No full text

    The flexible magnetic field thruster

    No full text

    Inorganic carbon acquisition in red-tide dinoflagellates

    Get PDF
    Carbon acquisition was investigated in three marine bloom-forming dinoflagellates – Prorocentrum minimum, Heterocapsa triquetra and Ceratium lineatum. In vivo activities of extracellular and intracellular carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3– uptake rates were measured by membrane inlet mass spectrometry (MIMS) in cells acclimated to low pH (8.0) and high pH (8.5 or 9.1). A second approach used short-term 14C-disequilibrium incubations to estimate the carbon source utilized by the cells. All three species showed negligible extracellular CA (eCA) activity in cells acclimated to low pH and only slightly higher activity when acclimated to high pH. Intracellular CA (iCA) activity was present in all three species, but it increased only in P. minimum with increasing pH. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution were low compared to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics. Moreover, apparent affinities for inorganic carbon (Ci) increased with increasing pH in the acclimation, indicating the operation of an efficient CO2 concentration mechanism (CCM) in these dinoflagellates. Rates of CO2 uptake were comparably low and could not support the observed rates of photosynthesis. Consequently, rates of HCO3– uptake were high in the investigated species, contributing more than 80% of the photosynthetic carbon fixation. The affinity for HCO3– and maximum uptake rates increased under higher pH. The strong preference for HCO3– was also confirmed by the 14C-disequilibrium technique. Modes of carbon acquisition were consistent with the 13C-fractionation pattern observed and indicated a strong species-specific difference in leakage. These results suggest that photosynthesis in marine dinoflagellates is not limited by Ci even at high pH, which may occur during red tides in coastal waters

    Effect of transverse vibration on the performance of a heat pipe

    No full text

    Metabolic rate models and the substitutability of predator populations

    Get PDF
    • Much of the debate surrounding the consequences of biodiversity loss centres around the issue of whether different species are functionally similar in their effects on ecological processes. In this study, we examined whether populations consisting of smaller, more abundant individuals are functionally similar to populations of the same species with larger, fewer individuals. • We manipulated the biomass and density of banded sunfish (Enneacanthus obesus) and measured their impact on populations of Southern leopard frog (Rana sphenocephala) larvae. We also evaluated the ability of models relating metabolic rate to body size to predict the relative impacts of populations that differ in average body size and population density. • Our results indicate that population biomass, density and their interaction each play a large role in determining the effect of a predator population on its food resource. Populations with smaller but more abundant individuals had effects as large or larger than those populations with larger but fewer individuals. • Although we found qualitative agreement between the observed relative effects of populations with that predicted by allometric models, we also found that density-dependence can cause effects of a population to differ from that expected based on allometry. • The substitutability of populations differing in average body size appears to depend on complex relationships between metabolic rate, population density and the strength of density-dependence. The restrictive conditions necessary to establish functional equivalence among different populations of the same species suggests that functional equivalence should be rare in most communities
    corecore