5 research outputs found

    Exceptional overproduction of a functional human membrane protein

    No full text
    Eukaryotic-especially human-membrane protein overproduction remains a major challenge in biochemistry. Heterologously overproduced and purified proteins provide a starting point for further biochemical, biophysical and structural studies, and the lack of sufficient quantities of functional membrane proteins is frequently a bottleneck hindering this. Here, we report exceptionally high production levels of a correctly folded and crystallisable recombinant human integral membrane protein in its active form; human aquaporin 1 (hAQP1) has been heterologously produced in the membranes of the methylotrophic yeast Pichia pastoris. After solubilisation and a two step purification procedure, at least 90 mg hAQP1 per liter of culture is obtained. Water channel activity of this purified hAQP was verified by reconstitution into proteoliposomes and performing stopped-flow vesicle shrinkage measurements. Mass spectrometry confirmed the identity of hAQPI in crude membrane preparations, and also from purified protein reconstituted into proteoliposomes. Furthermore, crystallisation screens yielded diffraction quality crystals of untagged recombinant hAQP1. This study illustrates the power of the yeast P. pastoris as a host to produce exceptionally high yields of a functionally active, human integral membrane protein for subsequent functional and structural characterization. (c) 2007 Elsevier Inc. All rights reserved

    Induction of labour at 41 weeks or expectant management until 42 weeks: A systematic review and an individual participant data meta-analysis of randomised trials

    No full text
    Background The risk of perinatal death and severe neonatal morbidity increases gradually after 41 weeks of pregnancy. Several randomised controlled trials (RCTs) have assessed if induction of labour (IOL) in uncomplicated pregnancies at 41 weeks will improve perinatal outcomes. We performed an individual participant data meta-analysis (IPD-MA) on this subject. Methods and findings We searched PubMed, Excerpta Medica dataBASE (Embase), The Cochrane Library, Cumulative Index of Nursing and Allied Health Literature (CINAHL), and PsycINFO on February 21, 2020 for RCTs comparing IOL at 41 weeks with expectant management until 42 weeks in women with uncomplicated pregnancies. Individual participant data (IPD) were sought from eligible RCTs. Primary outcome was a composite of severe adverse perinatal outcomes: mortality and severe neonatal morbidity. Additional outcomes included neonatal admission, mode of delivery, perineal lacerations, and postpartum haemorrhage. Prespecified subgroup analyses were conducted for parity (nulliparous/multiparous), maternal age (<35/≥35 years), and body mass index (BMI) (<30/≥30). Aggregate data meta-analysis (MA) was performed to include data from RCTs for which IPD was not available. From 89 full-text articles, we identified three eligible RCTs (n = 5,161), and two contributed with IPD (n = 4,561). Baseline characteristics were similar between the groups regarding age, parity, BMI, and higher level of education. IOL resulted overall in a decrease of severe adverse perinatal outcome (0.4% [10/2,281] versus 1.0% [23/2,280]; relative risk [RR] 0.43 [95% confidence interval [CI] 0.21 to 0.91], p-value 0.027, risk difference [RD] -57/10,000 [95% CI -106/10,000 to -8/10,000], I2 0%). The number needed to treat (NNT) was 175 (95% CI 94 to 1,267). Perinatal deaths occurred in one (<0.1%) versus eight (0.4%) pregnancies (Peto odds ratio [OR] 0.21 [95% CI 0.06 to 0.78], p-value 0.019, RD -31/10,000, [95% CI -56/10,000 to -5/10,000], I2 0%, NNT 326, [95% CI 177 to 2,014]) and admission to a neonatal care unit ?4 days occurred in 1.1% (24/2,280) versus 1.9% (46/2,273), (RR 0.52 [95% CI 0.32 to 0.85], p-value 0.009, RD -97/10,000 [95% CI -169/10,000 to -26/10,000], I2 0%, NNT 103 [95% CI 59 to 385]). There was no difference in the rate of cesarean delivery (10.5% versus 10.7%; RR 0.98, [95% CI 0.83 to 1.16], p-value 0.81) nor in other important perinatal, delivery, and maternal outcomes. MA on aggregate data showed similar results. Prespecified subgroup analyses for the primary outcome showed a significant difference in the treatment effect (p = 0.01 for interaction) for parity, but not for maternal age or BMI. The risk of severe adverse perinatal outcome was decreased for nulliparous women in the IOL group (0.3% [4/1,219] versus 1.6% [20/1,264]; RR 0.20 [95% CI 0.07 to 0.60], p-value 0.004, RD -127/10,000, [95% CI -204/10,000 to -50/10,000], I2 0%, NNT 79 [95% CI 49 to 201]) but not for multiparous women (0.6% [6/1,219] versus 0.3% [3/1,264]; RR 1.59 [95% CI 0.15 to 17.30], p-value 0.35, RD 27/10,000, [95% CI -29/10,000 to 84/10,000], I2 55%). A limitation of this IPD-MA was the risk of overestimation of the effect on perinatal mortality due to early stopping of the largest included trial for safety reasons after the advice of the Data and Safety Monitoring Board. Furthermore, only two RCTs were eligible for the IPDMA; thus, the possibility to assess severe adverse neonatal outcomes with few events was limited. Conclusions In this study, we found that, overall, IOL at 41 weeks improved perinatal outcome compared with expectant management until 42 weeks without increasing the cesarean delivery rate. This benefit is shown only in nulliparous women, whereas for multiparous women, the incidence of mortality and morbidity was too low to demonstrate any effect. The magnitude of risk reduction of perinatal mortality remains uncertain. Women with pregnancies approaching 41 weeks should be informed on the risk differences according to parity so that they are able to make an informed choice for IOL at 41 weeks or expectant management until 42 weeks. Study Registration: PROSPERO CRD42020163174
    corecore