14 research outputs found

    Reduced apoptotic levels in squamous but not basal cell carcinomas correlates with detection of cutaneous human papillomavirus

    Get PDF
    We have investigated the apoptotic levels and expression of the apoptotic inducer Bak in non-melanoma skin cancers. Squamous cell carcinomas of known human papillomavirus status from immunocompetent patients were analysed for the expression of the Bak protein, and the expression profile was compared both to the presence of apoptotic cells and the proliferation marker Ki-67. We demonstrate an inverse correlation between human papillomavirus positivity and Bak expression in squamous cell carcinomas, with concomitantly fewer apoptoic cells being detected in the human papillomavirus positive tumours. Bak expression was not observed in basal cell carcinomas irrespective of human papillomavirus status, suggesting that Bak only plays a role in signalling apoptosis in squamous, but not basal, cell cancers. No differences were observed in the proliferation rates between papillomavirus positive and negative squamous cell tumours. However, a significant decrease in the number of apoptotic cells was observed in human papillomavirus-positive squamous cell carcinomas which suggests that the virus may have significantly altered the relationship between proliferation and apoptosis in a proportion of these tumours

    Solar Ultraviolet Light

    No full text

    β-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-κB activation

    No full text
    NF-κB activation is an important mechanism of mammalian UV response to protect cells. UV-induced NF-κB activation depends on the casein kinase II (CK2) phosphorylation of IκBα at a cluster of C-terminal sites, but how it is regulated remains unclear. Here we demonstrate that β-arrestin2 can function as an effective suppressor of UV-induced NF-κB activation through its direct interaction with IκBα. CK2 phosphorylation of β-arrestin2 blocks its interaction with IκBα and abolishes its suppression of NF-κB activation, indicating that the β-arrestin2 phosphorylation is critical. Moreover, stimulation of β(2)-adrenergic receptors, a representative of G-protein-coupled receptors in epidermal cells, promotes dephosphorylation of β-arrestin2 and its suppression of NF-κB activation. Consequently, the β-arrestin2 suppression leads to promotion of UV-induced cell death, which is also under regulation of β-arrestin2 phosphorylation. Thus, β-arrestin2 is identified as a phosphorylation-regulated suppressor of UV response and this may play a functional role in the response of epidermal cells to UV
    corecore