29 research outputs found

    Intragenic and structural variation in the SMN locus and clinical variability in spinal muscular atrophy

    Get PDF
    Clinical severity and treatment response vary significantly between patients with spinal muscular atrophy. The approval of therapies and the emergence of neonatal screening programmes urgently require a more detailed understanding of the genetic variants that underlie this clinical heterogeneity. We systematically investigated genetic variation other than SMN2 copy number in the SMN locus. Data were collected through our single-centre, population-based study on spinal muscular atrophy in the Netherlands, including 286 children and adults with spinal muscular atrophy Types 1-4, including 56 patients from 25 families with multiple siblings with spinal muscular atrophy. We combined multiplex ligation-dependent probe amplification, Sanger sequencing, multiplexed targeted resequencing and digital droplet polymerase chain reaction to determine sequence and expression variation in the SMN locus. SMN1, SMN2 and NAIP gene copy number were determined by multiplex ligation-dependent probe amplification. SMN2 gene variant analysis was performed using Sanger sequencing and RNA expression analysis of SMN by droplet digital polymerase chain reaction. We identified SMN1-SMN2 hybrid genes in 10% of spinal muscular atrophy patients, including partial gene deletions, duplications or conversions within SMN1 and SMN2 genes. This indicates that SMN2 copies can vary structurally between patients, implicating an important novel level of genetic variability in spinal muscular atrophy. Sequence analysis revealed six exonic and four intronic SMN2 variants, which were associated with disease severity in individual cases. There are no indications that NAIP1 gene copy number or sequence variants add value in addition to SMN2 copies in predicting the clinical phenotype in individual patients with spinal muscular atrophy. Importantly, 95% of spinal muscular atrophy siblings in our study had equal SMN2 copy numbers and structural changes (e.g. hybrid genes), but 60% presented with a different spinal muscular atrophy type, indicating the likely presence of further inter- and intragenic variabilities inside as well as outside the SMN1 locus. SMN2 gene copies can be structurally different, resulting in inter- and intra-individual differences in the composition of SMN1 and SMN2 gene copies. This adds another layer of complexity to the genetics that underlie spinal muscular atrophy and should be considered in current genetic diagnosis and counselling practices

    Analysis of FUS, PFN2, TDP-43, and PLS3 as potential disease severity modifiers in spinal muscular atrophy

    Get PDF
    Objective To investigate mutations in genes that are potential modifiers of spinal muscular atrophy (SMA) severity. Methods We performed a hypothesis-based search into the presence of variants in fused in sarcoma (FUS), transactive response DNA-binding protein 43 (TDP-43), plastin 3 (PLS3), and profilin 2 (PFN2) in a cohort of 153 patients with SMA types 1-4, including 19 families. Variants were detected with targeted next-generation sequencing and confirmed with Sanger sequencing. Functional effects of the identified variants were analyzed in silico and for PLS3, by analyzing expression levels in peripheral blood. Results We identified 2 exonic variants in FUS exons 5 and 6 (p.R216C and p.S135N) in 2 unrelated patients, but clinical effects were not evident. We identified 8 intronic variants in PLS3 in 33 patients. Five PLS3 variants (c.1511+82T>C; c.748+130 G>A; c.367+182C>T; c.891-25T>C (rs145269469); c.1355+17A>G (rs150802596)) potentially alter exonic splice silencer or exonic splice enhancer sites. The variant c.367+182C>T, but not RNA expression levels, corresponded with a more severe phenotype in 1 family. However, this variant or level of PLS3 expression did not consistently correspond with a milder or more severe phenotype in other families or the overall cohort. We found 3 heterozygous, intronic variants in PFN2 and TDP-43 with no correlation with clinical phenotype or effects on splicing. Conclusions PLS3 and FUS sequence variants do not modify SMA severity at the population level. Specific variants in individual patients or families do not consistently correlate with disease severity

    A continuous repetitive task to detect fatigability in spinal muscular atrophy

    No full text
    Abstract Background To determine the value of a continuous repetitive task to detect and quantify fatigability as additional dimension of impaired motor function in patients with hereditary proximal spinal muscular atrophy (SMA). Results In this repeated measure case-control study 52 patients with SMA types 2–4, 17 healthy and 29 disease controls performed five consecutive rounds of the Nine-Hole Peg test to determine the presence of fatigability. We analysed differences in test performance and associations with disease characteristics. Five patients with SMA type 2 (22%) and 1 disease control (3%) could not finish five rounds due to fatigue (p = 0.01). Patients with SMA type 2 performed the test significantly more slowly than all other groups (p  0.4). Time needed to complete each round during the five-round task increased in 15 patients with SMA type 2 (65%), 4 with type 3a (36%), 4 with type 3b/4 (22%), 9 disease controls (31%) and 1 healthy control (6%). There was no effect of age at disease onset or disease duration in SMA type 2 (p = 0.39). Test-retest reliability was high. Conclusion Fatigability of remaining arm function is a feature of SMA type 2 and can be determined with continuous repetitive tasks

    Assessment of fatigability in patients with spinal muscular atrophy : development and content validity of a set of endurance tests

    No full text
    Background: Fatigability has emerged as an important dimension of physical impairment in patients with Spinal Muscular Atrophy (SMA). At present reliable and valid outcome measures for both mildly and severely affected patients are lacking. Therefore the primary aim of this study is the development of clinical outcome measures for fatigability in patients with SMA across the range of severity. Methods: We developed a set of endurance tests using five methodological steps as recommended by the 'COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). In this iterative process, data from multiple sources were triangulated including a scoping review of scientific literature, input from a scientific and clinical multidisciplinary expert panel and three pilot studies including healthy persons (N = 9), paediatric patients with chronic disorders (N = 10) and patients with SMA (N = 15). Results: Fatigability in SMA was operationalised as the decline in physical performance. The following test criteria were established; one method of testing for patients with SMA type 2-4, a set of outcome measures that mimic daily life activities, a submaximal test protocol of repetitive activities over a longer period; external regulation of pace. The scoping review did not generate suitable outcome measures. We therefore adapted the Endurance Shuttle Walk Test for ambulatory patients and developed the Endurance Shuttle Box and Block Test and the - Nine Hole Peg Test for fatigability testing of proximal and distal arm function. Content validity was established through input from experts and patients. Pilot testing showed that the set of endurance tests are comprehensible, feasible and meet all predefined test criteria. Conclusions: The development of this comprehensive set of endurance tests is a pivotal step to address fatigability in patients with SMA

    Assessment of fatigability in patients with spinal muscular atrophy: development and content validity of a set of endurance tests

    No full text
    Abstract Background Fatigability has emerged as an important dimension of physical impairment in patients with Spinal Muscular Atrophy (SMA). At present reliable and valid outcome measures for both mildly and severely affected patients are lacking. Therefore the primary aim of this study is the development of clinical outcome measures for fatigability in patients with SMA across the range of severity. Methods We developed a set of endurance tests using five methodological steps as recommended by the ‘COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN). In this iterative process, data from multiple sources were triangulated including a scoping review of scientific literature, input from a scientific and clinical multidisciplinary expert panel and three pilot studies including healthy persons (N = 9), paediatric patients with chronic disorders (N = 10) and patients with SMA (N = 15). Results Fatigability in SMA was operationalised as the decline in physical performance. The following test criteria were established; one method of testing for patients with SMA type 2–4, a set of outcome measures that mimic daily life activities, a submaximal test protocol of repetitive activities over a longer period; external regulation of pace. The scoping review did not generate suitable outcome measures. We therefore adapted the Endurance Shuttle Walk Test for ambulatory patients and developed the Endurance Shuttle Box and Block Test and the - Nine Hole Peg Test for fatigability testing of proximal and distal arm function. Content validity was established through input from experts and patients. Pilot testing showed that the set of endurance tests are comprehensible, feasible and meet all predefined test criteria. Conclusions The development of this comprehensive set of endurance tests is a pivotal step to address fatigability in patients with SMA
    corecore