5 research outputs found

    Development of machine learning models to predict cancer-related fatigue in Dutch breast cancer survivors up to 15 years after diagnosis

    Get PDF
    Purpose: To prevent (chronic) cancer-related fatigue (CRF) after breast cancer, it is important to identify survivors at risk on time. In literature, factors related to CRF are identified, but not often linked to individual risks. Therefore, our aim was to predict individual risks for developing CRF.Methods: Two pre-existing datasets were used. The Nivel-Primary Care Database and the Netherlands Cancer Registry (NCR) formed the Primary Secondary Cancer Care Registry (PSCCR). NCR data with Patient Reported Outcomes Following Initial treatment and Long-term Evaluation of Survivorship (PROFILES) data resulted in the PSCCR-PROFILES dataset. Predictors were patient, tumor and treatment characteristics, and pre-diagnosis health. Fatigue was GP-reported (PSCCR) or patient-reported (PSCCR-PROFILES). Machine learning models were developed, and performances compared using the C-statistic.Results: In PSCCR, 2224/12813 (17%) experienced fatigue up to 7.6 ± 4.4 years after diagnosis. In PSCCR-PROFILES, 254 (65%) of 390 patients reported fatigue 3.4 ± 1.4 years after diagnosis. For both, models predicted fatigue poorly with best C-statistics of 0.561 ± 0.006 (PSCCR) and 0.669 ± 0.040 (PSCCR-PROFILES).Conclusion: Fatigue (GP-reported or patient-reported) could not be predicted accurately using available data of the PSCCR and PSCCR-PROFILES datasets.Implications for Cancer Survivors: CRF is a common but underreported problem after breast cancer. We aimed to develop a model that could identify individuals with a high risk of developing CRF, ideally to help them prevent (chronic) CRF. As our models had poor predictive abilities, they cannot be used for this purpose yet. Adding patient-reported data as predictor could lead to improved results. Until then, awareness for CRF stays crucial

    An empirical model for educational simulation of cervical dilation in first-stage labor

    Get PDF
    Background Several models for educational simulation of labor and delivery were published in the literature and incorporated into a commercially available training simulator (CAE Healthcare Lucina). However, the engine of this simulator does not include a model for the clinically relevant indicators: uterine contraction amplitude and frequency, and cervical dilation. In this paper, such a model is presented for the primigravida in normal labor. Methods The conceptual and mathematical models represent oxytocin release by the hypothalamus, oxytocin pharmacokinetics, and oxytocin effect on uterine contractions, cervical dilation, and (positive) feedback from cervical dilation to oxytocin release by the hypothalamus. Results Simulation results for cervical dilation are presented, together with target data for a normal primigravida. Corresponding oxytocin concentrations and amplitude and frequency of uterine contractions are also presented. Conclusion An original empirical model for educational simulation of oxytocin concentration, uterine contractions, and cervical dilation in first-stage labor is presented. Simulation results for cervical dilation match target data for a normal patient. The model forms a basis for taking into account more independent variables and patient profiles and can thereby considerably expand the range of training scenarios that can be simulated
    corecore