

Correction to

Citation for published version (APA):
Gefferie, S. R., Scholten, A. W. J., Wijlens, K. A. E., Bastos, M. L. F., van der Hout-van der Jagt, M. B., Zwart, H., & van Meurs, W. L. (2021). Correction to: An empirical model for educational simulation of cervical dilation in first stage labor (Advances in Simulation, (2018), 3, 1, (9), 10.1186/s41077-018-0068-3). Advances in Simulation, 6(1), 34. Article 34. https://doi.org/10.1186/s41077-021-00184-y

DOI:

10.1186/s41077-021-00184-y

Document status and date:

Published: 01/10/2021

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 04. Oct. 2023

CORRECTION Open Access

Correction to: An empirical model for educational simulation of cervical dilation in first stage labor

Silvano R. Gefferie^{1†}, Anouk W. J. Scholten^{1†}, Kim A. E. Wijlens^{1†}, M. Luísa Ferreira Bastos², M. Beatrijs van der Hout-van der Jagt³, Hans Zwart⁴ and Willem L. van Meurs^{5*}

Correction to: Adv Simul 3:9 (2018) https://doi.org/10.1186/s41077-018-0068-3

Continuing work on a recently published empirical model for educational simulation of cervical dilation [1] resulted in identification of errors in the code implementing this model. Numerical values of three parameters and one state variable had to be updated to obtain the original simulation results with corrected code. The errors identified in the original code included incorrect assignment of the value of the parameter that governs the dilation increase due to pressure exerted by the fetus on the cervix, a discrete time step specified in hours with parameters using minutes as a time reference, numerical integration of a static equation, and unnecessary capping of the uterine contraction amplitude. In the MATLAB code listed in the appendix, these errors are corrected. To obtain the originally published simulation results for cervical dilation, three parameter values had to be adjusted, see Table 1.

On closer inspection, it was also found that the value of the parameter AFR₅₀ of 7.9 mU/min in [2] was incorrectly assigned to P₆, which is a concentration in mU/mL. In semi-steady state it can be derived from Eqs. (2, 3) of the original paper that the updated value listed in Table 1 corresponds to the concentration in steady state on an infusion of magnitude AFR₅₀ for the given pharmacokinetic parameters P₃ and P4. The evolution of drug mass over time is given by the pharmacokinetic equation, Eq. (4) of the original paper. In semi-steady state, drug mass is proportional to infusion rate. This value is assigned to m (0) in Table 1. Simulation results for cervical dilation using corrected code and adjusted numerical values match the results presented in the original paper in good approximation. The conceptual model and all presented model equations stood up to this additional scrutiny.

The original article can be found online at https://doi.org/10.1186/s41077-018-0068-3.

Full list of author information is available at the end of the article

© The Author(s). 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

^{*} Correspondence: vanmeurs@orange.fr

[†]Silvano R. Gefferie, Anouk W. J. Scholten and Kim A. E. Wijlens contributed equally to this work.

⁵Cardiovascular and Respiratory Physiology Group, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

Gefferie et al. Advances in Simulation (2021) 6:34 Page 2 of 3

Table 1 Original and updated model parameters. See [1] for a detailed description of the individual parameters and references to numerical values

	original value	updated value	units
P ₁	0.740		mU/min
P_2	50.0	1.70	mU/(min cm)
P_3	0.0693		1/min
P_4	18,700		mL
P_5	0.500		1/min
P_6	7.90	0.00610	mU/mL
P_7	1.11		dimensionless
P ₈	40.0		mm Hg
P_9	40.0		mm Hg
P ₁₀	1.00×10^{-3}		cm/min
P ₁₁	1.90×10^{-2}	4.00×10^{-4}	cm/mm Hg
m(0)	273	59.0	mU
d(0)	2.0		cm

Appendix

Corrected and verified Matlab code

```
Matlab 2018 code implementation
Cervical dilation model
                                  Willem van Meurs
                                   Consultant
                                   Dec. 2020
%%% Verified by Lex van Loon and Hans Zwart Jan. 2021
%%% and by Silvano Gefferie April 2021
% Algorithm implicit in the included comments.
% Symbols as in Gefferie et al. 2018.
clear
% DEFINITION OF SIMULATION TIME
% t=(n-1)*T Discrete time n also serves as Matlab vector index
t.min=0.0:
                     % min
tmax=1050.0;
                    % min
T=1;
                     % integration step size (min)
N=round((tmax-tmin)/T)+1;
   t.(n) = (n-1) *T;
% NUMERICAL VALUES MODEL PARAMETERS
                    % mU/min
P2=1.70;
P3=0.0693;
                    % mU/(min cm)
                    % 1/min
P4=18700;
P5=0.500;
                    % 1/min
P6=0.00610;
P7=1 11:
                    % dimensionless
P8=40.0;
                    % mm Hg
P9=40.0;
P10=1.00*10^-3;
                    % mm Hor
                   % cm/min
P11=4.00*10^-4;
                   % cm/mm Hg
% STATE VARIABLE INITIALIZATION
d=2.00;
                    % cm
% RUN-TIME EQUATIONS
   r=P1+P2*d;
   nm = (1-P3*T)*m+T*r;
   c=m/P4;
   s=c^P7/(P6^P7+c^P7);
                             % sigmoid
   f=P5*s:
   nd=d+T*(P10+P11*f*a);
                             % d(n+1)
  ..u>10.0
nd=10.0;
end
   if nd>10.0
                             % cap to 10 cm
   output(n)=d;
   m=nm:
   d=nd;
end
% GRAPHICAL OUTPUT
plot(t,output)
axis([tmin tmax 2 10])
grid on
xlabel('time in min')
ylabel('dilation in cm')
```

Acknowledgements

The authors thank Eva Kleinveld and Lex van Loon for their help in identifying and correcting the programming errors.

Author details

¹Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands. ²Animals in Science, Eurogroup for Animals, Hertogstraat 29, 1000 Brussels, Belgium. ³Department of Signal Processing Systems, Faculty of Electrical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands.

Department of Applied Mathematics, Faculty of Electrical Engineering, Mathematics, and Computer Science, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
Cardiovascular and Respiratory Physiology Group, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.

Published online: 01 October 2021

References

- Gefferie SR, Scholten AWJ, Wijlens KAE, Ferreira-Bastos ML, van der Hout-van der Jagt MB, Zwart H, et al. An empirical model for educational simulation of cervical dilation in first stage labor. Adv Simul. 2018;3:9 1–4.
- Lobo MF, Bastos LF, van Meurs WL, Ayres-de-Campos D. A model for educational simulation of the effect of oxytocin on uterine contractions. Med Eng Phys. 2013;35(4):524–31. https://doi.org/10.1016/j.medengphy.2 012.06.021.