61 research outputs found

    A New Method for Estimating the Moisture Content and Flexibility of Polymerised Bentonite Clay Mat

    Get PDF
    This paper presents a scientific development to address the current absence of a convenient technique to identify the ductile to brittle transition of bentonite clay mats. The instrumented indentation and 3-point bending tests were performed on different liquid polymer hydrated bentonite clay mats at varying moisture content. Properties measured include modified Brinell Hardness Number (BHN) and elastic structural stiffness (EI). The dependence of flexural stiffness on moisture content is demonstrated to conform to a best power function variation. The ductile to brittle transition of clay mat is affected primarily by the change in the moisture content and for the clay mat to remain flexible, critical moisture content of 1.7 times of its plastic limit is required. Results also indicate that a strong correlation between indentation hardness and the structural stiffness. The subsequent outcome in the development of a portable quality control device to monitor the acceptable moisture content level to ensure flexibility of the clay mats was also described in this paper

    Influence of Salinity on the Consistency and Swelling Characteristics of Bentonite

    Get PDF
    Bentonite clay liners are used as a barrier material for water, chemicals and gas in civil engineering structures such as engineered landfills and in structural water proofing. Bentonic clays absorb water and expand greater than any other ordinary plastic clay. The expansiveness of the clay is characterised by the absorbed cation in the clay and the geochemical environment. This paper critically investigates factors that contribute to the swelling characteristics of bentonite clay and its products. It takes particular view on different types of bentonite used in clay liners and their interaction with saline ground water conditions. The swelling pressure of sodium bentonite in deionised water is demonstrated to be very high. However when it is in a saline environment the magnitude of swelling pressure can be less than halved. A parallel observation is noted under conditions of free swell. These are explained as being a consequence of reduction in the double layer thickness which is further reflected in the reduction of cationexchange capacity when the bentonite is in a saline environment. Variations in cation exchange capacity, consistency limit and free swell of the bentonite products in different saline environment are observed and its significance discussed

    Developmental research of sustainable technologies to minimise problematic road embankment settlements

    Get PDF
    Challenging, problematic and non-uniform ground conditions are a night mare to geotechnical engineers tasked with the design and construction of buildings and transport infrastructure. These often suffer undesirable structural settlements. Designing within the current understanding of geotechnics; settlement in peat and organic soils need to be recognised to include the known “primary and secondary consolidation characteristics” and the lesser known “tertiary consolidation phase”. These eventually contribute cumulatively to the consequential uneven and hazardous “bumpy road” surfaces. Undulating flexible road pavements result primarily from the transference of the heavy self-weight of the embankment fill to yielding and non-uniform subgrade. The adoption of conventional design/repair methods such as pile, vertical drain, soil replacement and soil stabilisation are expensive and inappropriate in very soft ground conditions. These then lead to unjustifiably high and repetitive maintenance costs. There being no one quick fix solution for all; pragmatic research must necessarily identify the best/progressively improved practical and sustainable solution. A viable solution is to develop criteria and explore the concept of a “masonry arch bridge structure/lintel-column structure” and adopting sustainable materials through pragmatic searching for appropriate recyclable waste materials. This will lead to the basis for a sustainable, innovative, strong, stiff, permeable composite mat structure that can be used on soft and/or yielding ground conditions. Conceptual lightweight fill technology including the popularly used expanded polystyrene (EPS) and the innovative composite mats recently being developed by the research team are outlined

    The comparative in situ hygrothermal performance of Hemp and Stone Wool insulations in vapour open timber frame wall panels

    Get PDF
    An in situ experiment in a full scale timber frame test building was carried out to compare the hygrothermal performance of Hemp and Stone Wool insulations of identical thermal conductivity. Hemp and Stone Wool insulations were installed in timber frame wall panels without vapour barrier. The comparison was made in terms of heat transfer properties, likelihood of mould growth and condensation. Step changes in internal relative humidity were performed to explore the effect of high and normal internal moisture load on the wall panels. No significant difference between the average equivalent thermal transmittance (U-values) of the panels incorporating Hemp and Stone Wool insulations was observed. The average equivalent U-values of the panels were closer to the calculated U-values of the panels based on the manufacturers’ declared thermal conductivity of Hemp and Stone Wool insulations. It was observed that the placement of heat flux sensor along the depth of the insulation had significant influence on the measured equivalent U-value of the panels during high internal moisture load. The frequency and likelihood of condensation was higher in the interface of Stone Wool and Oriented Strand Board (OSB). In terms of the parametric assessment of mould germination potential, relative humidity, temperature and exposure conditions in the insulation-OSB interfaces were found to be favourable to germination of mould spore. However, when the insulations were dismantled, no mould was visually detected

    Road traffic accident hotspot identification using modified Voronoi Process

    Get PDF
    The Information Communication Technology (ICT) tools such as Geographical Information Systems (GIS) technology have a number of applications including road safety analysis. Hence it has provided a powerful tool for developing reliable database which can be used in the analysis of road accident data. This paper presents such a development of road traffic accident hotspots identification technique along a road using a Modified Voronoi Process (MVP) technique developed by the authors. This was facilitated by the development of GISbased road accident database. Three consecutive years’ data on Gadong road were acquired and used in the study. The analysis incorporated the computation of hotspot zone dimension (HZD) that led to the definition of a Road traffic Accident (RTA) hotspot for Brunei. Such ICT applications were nonexistent in Brunei Darussalam and this research has shown the potential of this technique and the consequent tangible benefit that will facilitate the Brunei Road Department in their effort to carry out road maintenance program for the national road network. The application of this technique has already contributed to the work in road safety inspection of the current road network and is being used as a future tool for assessing the road safety level of an individual road with time and between two or more road

    New technologies - new insights into the pathogenesis of hepatic encephalopathy

    Get PDF
    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which frequently accompanies acute or chronic liver disease. It is characterized by a variety of symptoms of different severity such as cognitive deficits and impaired motor functions. Currently, HE is seen as a consequence of a low grade cerebral oedema associated with the formation of cerebral oxidative stress and deranged cerebral oscillatory networks. However, the pathogenesis of HE is still incompletely understood as liver dysfunction triggers exceptionally complex metabolic derangements in the body which need to be investigated by appropriate technologies. This review summarizes technological approaches presented at the ISHEN conference 2014 in London which may help to gain new insights into the pathogenesis of HE. Dynamic in vivo13C nuclear magnetic resonance spectroscopy was performed to analyse effects of chronic liver failure in rats on brain energy metabolism. By using a genomics approach, microRNA expression changes were identified in plasma of animals with acute liver failure which may be involved in interorgan interactions and which may serve as organ-specific biomarkers for tissue damage during acute liver failure. Genomics were also applied to analyse glutaminase gene polymorphisms in patients with liver cirrhosis indicating that haplotype-dependent glutaminase activity is an important pathogenic factor in HE. Metabonomics represents a promising approach to better understand HE, by capturing the systems level metabolic changes associated with disease in individuals, and enabling monitoring of metabolic phenotypes in real time, over a time course and in response to treatment, to better inform clinical decision making. Targeted fluxomics allow the determination of metabolic reaction rates thereby discriminating metabolite level changes in HE in terms of production, consumption and clearance

    Moisture Desorption Studies on Polymer Hydrated and Vacuum Extruded Bentonite Clay Mat

    Get PDF
    Moisture desorption observations from two bentonite clay mats subjected to ten environmental zones with individually different combinations of laboratory-controlled constant temperatures (between 20 °C and 40 °C) and relative humidity (between 15% and 70%) are presented. These laboratory observations are compared with predictions from mathematical models, such as thin-layer drying equations and kinetic drying models proposed by Page, Wang and Singh, and Henderson and Pabis. The quality of fit of these models is assessed using standard error (SE) of estimate, relative percent of error, and coefficient of correlation. The Page model was found to better predict the drying kinetics of the bentonite clay mats for the simulated tropical climates. Critical study on the drying constant and moisture diffusion coefficient helps to assess the efficacy of a polymer to retain moisture and control desorption through water molecule bonding. This is further substantiated with the Guggenheim–Anderson–De Boer (GAB) desorption isotherm model which is presented

    Hygrothermal performance of wood-hemp insulation in timber frame wall panels with and without a vapour barrier

    Get PDF
    An in situ experiment on a full-scale timber frame test building was carried out to study the hygrothermal performance of wood-hemp composite insulation in timber frame wall panels with and without a vapour barrier. The heat transfer properties and the likelihood of mould growth and condensation in the panels were compared. Step changes in the internal relative humidity were performed to explore the effects of high, normal and low internal moisture loads on the wall panels. No significant difference in the average equivalent thermal transmittance (U-values) between the panels with and without a vapour barrier was observed. The average equivalent U-values of the panels were close to the U-values calculated from the manufacturers’ declared thermal conductivity values of the insulation. The likelihood of condensation was higher at the interface of the wood-hemp insulation and the oriented strand board (OSB) in the panel without a vapour barrier. In terms of the parametric assessment of the mould germination potential, the relative humidity, the temperature and the exposure conditions in the insulation-OSB interfaces of the panel without a vapour barrier were found to be more favourable to the germination of mould spores. Nonetheless, when the insulations were dismantled, no mould was visually detected

    Hygric properties of hemp bio-insulations with differing compositions

    Get PDF
    The paper presents the results of a laboratory investigation on the hygric properties of five hemp insulation materials commercially available in the UK. The hemp fibre content varies between 30-95% in the total fibre content of the insulation materials examined. The adsorption-desorption isotherm, moisture buffer value, vapour diffusion resistance factor and water absorption coefficient were determined for the insulation materials investigated. The results showed that the hygric properties of the hemp insulation materials could vary widely depending on the constituents and fibrous structure. The considerable differences noted in the hygric properties of the insulation materials examined could potentially influence their hygrothermal performance as part of a building thermal envelope

    Thermal conductivity of building materials: an overview of its determination

    Get PDF
    A range of instruments are available to measure thermal conductivity of building materials. Some of these tools are heat-flow meter, hot plate, hot box and heat transfer analyzer. Thermal conductivity data derived by using different instruments can be different from each other. Implication of these variations in thermal conductivity is significant in terms of commercial profile of the insulations and also in terms of calculating energy saving in large scale use of that specific insulation. Thus it is important to know which of the measuring instrument for thermal conductivity can produce relatively accurate and representative result. This paper firstly looks at the methods and instrument for measuring thermal conductivity of building materials and secondly compares and analyses the results of testing thermal conductivity of fibrous insulations using a heat analyzer and a hot plate
    • …
    corecore