10 research outputs found

    Cerebrospinal Fluid Cytokines and Neurodegeneration-Associated Proteins in Parkinson's Disease.

    Get PDF
    INTRODUCTION: Immune markers are altered in Parkinson's disease (PD), but relationships between cerebrospinal fluid (CSF) and plasma cytokines and associations with neurodegeneration-associated proteins remain unclear. METHODS: CSF and plasma samples and demographic/clinical measures were obtained from 35 PD patients. CSF samples were analyzed for cytokines (together with plasma) and for α-synuclein, amyloid β(1-42) peptide, total tau, and phospho(Thr231)-tau. RESULTS: There were no CSF-plasma cytokine correlations. Interleukin (IL)-8 was higher and interferon-γ, IL-10, and tumor necrosis factor-α were lower in CSF versus plasma. In CSF, total tau correlated positively with IL-8 and IL-1β, whereas α-synuclein correlated positively with amyloid β(1-42) and negatively with semantic fluency (a known marker of PD dementia risk). DISCUSSION: CSF and peripheral cytokine profiles in PD are not closely related. Associations between CSF IL-8 and IL-1β and tau suggest that CSF inflammatory changes may relate to tau pathology within PD. CSF α-synuclein/amyloid β may reflect the risk of developing PD dementia. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.Funding for this work was provided by the Rosetrees Trust (M369-F1), Addenbrooke’s Charitable Trust (PF15/CWG) and the NIHR Cambridge Biomedical Research Centre Dementia and Neurodegeneration Theme (146281). RSW was supported by a Fellowship from Addenbrooke’s Charitable Trust (RG77199). SFM was supported by the Transeuro EU FP7 grant (242003) and is now an NIHR Academic Clinical Fellow (ACF-2015-23-501). DPB is supported by a Wellcome Trust Clinical Research Career Development Fellowship. RAB is an NIHR Senior Investigator (NF-SI-0616-10011) and is supported by the Wellcome Trust-MRC Cambridge Stem Cell Institute. CHWG holds a RCUK/UKRI Research Innovation Fellowship awarded by the Medical Research Council (MR/R007446/1) and receives support from the Cambridge Centre for Parkinson-Plus

    Monocyte Function in Parkinson's Disease and the Impact of Autologous Serum on Phagocytosis.

    Get PDF
    Background: Increasing evidence implicates involvement of the innate immune system in the initiation and progression of Parkinson's disease (PD). Monocytes and monocyte-derived cells perform a number of functions, such as phagocytosis, chemotaxis, and cytokine secretion, which may be particularly relevant to PD pathology. The behavior of these cells in early-moderate disease, in conditions more similar to the in-vivo environment has not been fully evaluated. Research Question: Does monocyte function, including phagocytosis, chemotaxis and cytokine secretion, differ in early-moderate PD compared to age and gender-matched controls? Methods: Participants included PD patients (n = 41) with early-moderate stage disease (Hoehn and Yahr ≤2) and age and gender matched controls (n = 41). Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and monocytes were further separated using CD14 magnetic beads. Functional assays, including bead phagocytosis (in standard medium and autologous serum), Boyden chamber trans-well chemotaxis, and cytokine secretion on lipopolysaccharide stimulation were performed. Monocyte surface markers relating to chemotaxis were measured using immunohistochemistry and flow cytometry. Between-group analysis was performed using paired t-tests. Results: An autologous serum environment significantly increased bead phagocytosis compared to standard medium as expected, in both patients and controls. When in autologous serum, PD monocytes demonstrated enhanced phagocytosis compared to control monocytes (p = 0.029). The level of serum-based phagocytosis was influenced by complement inactivation and the origin of the serum. There were no significant differences between PD and controls in terms of standard medium based monocyte migration or cytokine secretion in this cohort. Conclusions: Autologous serum has a significant influence on monocyte phagocytosis and reveals increased phagocytic capacity in early-moderate PD compared to controls. These conditions may better reflect the function of monocytes in-vivo in PD patients than standard medium based phagocytosis assays. Further studies will be required to replicate these results in larger cohorts, including earlier and later stages of disease, and to understand which serum factors are responsible for this observation and the potential mechanistic relevance to PD pathogenesis.Funding for this work was provided by Addenbrooke’s Charitable Trust, the Rosetrees Trust and the NIHR Cambridge Biomedical Research Centre. RSW was supported by a Fellowship from Addenbrooke’s Charitable Trust. DKV is supported by a Junior Research Fellowship from Homerton College, Cambridge. KMS is supported by a Fellowship from the Wellcome Trust. CHWG is supported by a Clinician Scientist Fellowship from the Medical Research Council. RAB is an NIHR Senior Investigator and is supported by the Wellcome Trust-MRC Cambridge Stem Cell Institute

    Peripheral innate immune and bacterial signals relate to clinical heterogeneity in Parkinson's disease.

    Get PDF
    The innate immune system is implicated in Parkinson's disease (PD), but peripheral in-vivo clinical evidence of the components and driving mechanisms involved and their relationship with clinical heterogeneity and progression to dementia remain poorly explored. We examined changes in peripheral innate immune-related markers in PD cases (n = 41) stratified according to risk of developing early dementia. 'Higher Risk'(HR) (n = 23) and 'Lower Risk' (LR) (n = 18) groups were defined according to neuropsychological predictors and MAPT H1/H2 genotype, and compared to age, gender and genotype-matched controls. Monocyte subsets and expression of key surface markers were measured using flow cytometry. Serum markers including alpha-synuclein, inflammasome-related caspase-1 and bacterial translocation-related endotoxin were measured using quantitative immuno-based assays. Specific markers were further investigated using monocyte assays and validated in plasma samples from a larger incident PD cohort (n = 95). We found that classical monocyte frequency was elevated in PD cases compared to controls, driven predominantly by the HR group, in whom Toll-Like Receptor (TLR)4+ monocytes and monocyte Triggering Receptor Expressed on Myeloid cells-2 (TREM2) expression were also increased. Monocyte Human Leukocyte Antigen (HLA)-DR expression correlated with clinical variables, with lower levels associated with worse cognitive/motor performance. Notably, monocyte changes were accompanied by elevated serum bacterial endotoxin, again predominantly in the HR group. Serum alpha-synuclein and inflammasome-related caspase-1 were decreased in PD cases compared to controls regardless of group, with decreased monocyte alpha-synuclein secretion in HR cases. Further, alpha-synuclein and caspase-1 correlated positively in serum and monocyte lysates, and in plasma from the larger cohort, though no associations were seen with baseline or 36-month longitudinal clinical data. Principal Components Analysis of all monocyte and significant serum markers indicated 3 major components. Component 1 (alpha-synuclein, caspase-1, TLR2+ monocytes) differentiated PD cases and controls in both groups, while Component 2 (endotoxin, monocyte TREM2, alpha-synuclein) did so predominantly in the HR group. Component 3 (classical monocytes, alpha-synuclein) also differentiated cases and controls overall in both groups. These findings demonstrate that systemic innate immune changes are present in PD and are greatest in those at higher risk of rapid progression to dementia. Markers associated with PD per-se (alpha-synuclein, caspase-1), differ from those related to cognitive progression and clinical heterogeneity (endotoxin, TREM2, TLR4, classical monocytes, HLA-DR), with mechanistic and therapeutic implications. Alpha-synuclein and caspase-1 are associated, suggesting inflammasome involvement common to all PD, while bacterial translocation associated changes may contribute towards progression to Parkinson's dementia. Additionally, HLA-DR-associated variations in antigen presentation/clearance may modulate existing clinical disease

    Monocyte Function in Parkinson's Disease and the Impact of Autologous Serum on Phagocytosis

    Get PDF
    Background: Increasing evidence implicates involvement of the innate immune system in the initiation and progression of Parkinson's disease (PD). Monocytes and monocyte-derived cells perform a number of functions, such as phagocytosis, chemotaxis, and cytokine secretion, which may be particularly relevant to PD pathology. The behavior of these cells in early-moderate disease, in conditions more similar to the in-vivo environment has not been fully evaluated.Research Question: Does monocyte function, including phagocytosis, chemotaxis and cytokine secretion, differ in early-moderate PD compared to age and gender-matched controls?Methods: Participants included PD patients (n = 41) with early-moderate stage disease (Hoehn and Yahr ≤2) and age and gender matched controls (n = 41). Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and monocytes were further separated using CD14 magnetic beads. Functional assays, including bead phagocytosis (in standard medium and autologous serum), Boyden chamber trans-well chemotaxis, and cytokine secretion on lipopolysaccharide stimulation were performed. Monocyte surface markers relating to chemotaxis were measured using immunohistochemistry and flow cytometry. Between-group analysis was performed using paired t-tests.Results: An autologous serum environment significantly increased bead phagocytosis compared to standard medium as expected, in both patients and controls. When in autologous serum, PD monocytes demonstrated enhanced phagocytosis compared to control monocytes (p = 0.029). The level of serum-based phagocytosis was influenced by complement inactivation and the origin of the serum. There were no significant differences between PD and controls in terms of standard medium based monocyte migration or cytokine secretion in this cohort.Conclusions: Autologous serum has a significant influence on monocyte phagocytosis and reveals increased phagocytic capacity in early-moderate PD compared to controls. These conditions may better reflect the function of monocytes in-vivo in PD patients than standard medium based phagocytosis assays. Further studies will be required to replicate these results in larger cohorts, including earlier and later stages of disease, and to understand which serum factors are responsible for this observation and the potential mechanistic relevance to PD pathogenesis

    The Cerebrospinal Fluid Profile of Cholesterol Metabolites in Parkinson’s Disease and Their Association With Disease State and Clinical Features

    Get PDF
    Disordered cholesterol metabolism is linked to neurodegeneration. In this study we investigated the profile of cholesterol metabolites found in the cerebrospinal fluid (CSF) of Parkinson’s disease (PD) patients. When adjustments were made for confounding variables of age and sex, 7α,(25R)26-dihydroxycholesterol and a second oxysterol 7α,x,y-trihydroxycholest-4-en-3-one (7α,x,y-triHCO), whose exact structure is unknown, were found to be significantly elevated in PD CSF. The likely location of the additional hydroxy groups on the second oxysterol are on the sterol side-chain. We found that CSF 7α-hydroxycholesterol levels correlated positively with depression in PD patients, while two presumptively identified cholestenoic acids correlated negatively with depression

    The Peripheral Inflammatory Response to Alpha-Synuclein and Endotoxin in Parkinson's Disease.

    Get PDF
    The immune system is activated in Parkinson's Disease (PD), as evidenced by neuroinflammatory changes within the brain as well as elevated immune markers in peripheral blood. Furthermore, inflammatory cytokine levels in the blood are associated with disease severity and rate of progression. However, the factors driving this immune response in PD are not well established. We investigated cell-extrinsic factors in systemic immune activation by using α-synuclein monomers and fibrils, as well as bacterial toxins, to stimulate peripheral blood mononuclear cells (PBMCs) derived from 31 patients and age/gender-matched controls. α-synuclein monomers or fibrils resulted in a robust cytokine response (as measured by supernatant cytokine concentrations and mRNA expression in cultured cells) in both PD and control PBMCs, similar to that induced by bacterial LPS. We found no PD vs. control differences in cytokine production, nor in mRNA expression. Levels of endotoxin within the recombinant α-synuclein used in these experiments were very low (0.2-1.3EU/mL), but nonetheless we found that comparable levels were sufficient to potentially confound our cytokine concentration measurements for a number of cytokines. However, α-synuclein monomers increased production of IL-1β and IL-18 to levels significantly in excess of those induced by low-level endotoxin. In conclusion, this study: (i) highlights the importance of accounting for low-level endotoxin in antigen-PBMC stimulation experiments; (ii) indicates that cell-extrinsic factors may be a major contributor to immune activation in PD; and (iii) suggests that α-synuclein may play a role in inflammasome-related cytokine production in the periphery.Grant funding from the Academy of Medical Sciences UK, the Rosetrees Trust, the Stevenage Biosciences Catalyst and Addenbrooke’s Charitable Trust contributed to this work. The research was also supported by the NIHR Cambridge Biomedical Research Centre (Cambridge University Hospitals NHS Trust/University of Cambridge). C H Williams-Gray is supported by a fellowship from the Medical Research Council. A J White was funded by Homerton College. R S Wijeyekoon was supported by a fellowship from Addenbrooke’s Charitable Trust. K M Scott is supported by a fellowship from the Wellcome Trust. R A Barker is supported by the Wellcome-MRC Cambridge Stem Cell Institute and is an NIHR Senior Investigator
    corecore