7 research outputs found

    Potential of in vivo real-time gastric gas profiling: A pilot evaluation of heat-stress and modulating dietary cinnamon effect in an animal model

    Get PDF
    Gastroenterologists are still unable to differentiate between some of the most ordinary disorders of the gut and consequently patients are misdiagnosed. We have developed a swallowable gas sensor capsule for addressing this. The gases of the gut are the by-product of the fermentation processes during digestion, affected by the gut state and can consequently provide the needed information regarding the health of the gut. Here we present the first study on gas sensor capsules for revealing the effect of a medical supplement in an animal (pig) model. We characterise the real-time alterations of gastric-gas in response to environmental heat-stress and dietary cinnamon and use the gas profiles for understanding the bio-physiological changes. Under no heat-stress, feeding increases gastric CO2 concentration, while dietary cinnamon reduces it due to decrease in gastric acid and pepsin secretion. Alternatively, heat-stress leads to hyperventilation in pigs, which reduces CO2 concentration and with the cinnamon treatment, CO2 diminishes even more, resulting in health improvement outcomes. Overall, a good repeatability in gas profiles is also observed. The model demonstrates the strong potential of real-time gas profiler in providing new physiological information that will impact understanding of therapeutics, presenting a highly reliable device for monitoring/diagnostics of gastrointestinal disorders

    Dietary inclusion of 1,3-Butanediol increases dam circulating ketones and increases progeny birth weight

    Get PDF
    1,3-Butanediol (BD) is a ketogenic substance that can improve piglet growth and survival and potentially increase performance in gilt progeny when provided as a dietary supplement during late gestation. Gilts (n = 77; parity 1) and sows (n = 74; parities 2 and 3) were fed either a standard commercial gestation diet or a diet supplemented with 4% BD from day 90 of gestation until farrowing. Dams fed with diets supplemented with BD had higher plasma beta-hydroxybutyrate (p = 0.01) and lower non-esterified fatty acid concentrations (p < 0.001). The percentage of progeny that were light-for-age (<1.1 kg) at birth was decreased by BD (18.2 vs. 13.5%, p < 0.006), particularly in gilts (24.0 vs. 18.3%, p < 0.034). Individual birth weights and litter weights birth weights tended to be increased by the BD diet (p = 0.085 and 0.078; respectively) although these effects were not maintained to weaning. Pre-weaning mortality was greater in gilt than in sow progeny and was not altered by dietary BD. Feeding BD in late gestation can improve birth weight, but further work is needed to see if these effects are carried through subsequent stages of growth, particularly in gilt progeny

    Primiparous and multiparous sows have largely similar colostrum and milk composition profiles throughout lactation

    Get PDF
    It is important to understand the biological factors influencing the poorer lifetime performance of gilt progeny in comparison to sow progeny and determine whether this may be partially due to differences in lactation performance between primiparous and multiparous sows. It was hypothesized that primiparous sows would have lower levels of immunoglobulin G (IgG) in colostrum and milk compared to multiparous sows, and lower levels of other energetic components. Differences in colostrum and milk composition between ten primiparous and ten multiparous sows (parities 3 and 4) from a commercial herd were examined throughout lactation (day 0, 1, 2, 3, 7, 14, and 21). Overall, there were no (p ≥ 0.05) parity differences in total IgG, fat, protein, lactose, and net energy (NE) concentrations. Primiparous sows had higher lactose levels at day 2 (parity by timepoint interaction; p = 0.036) and lower NE at day 3 (p = 0.091), and multiparous sows had higher lactose levels at days 14 and 21. Results suggest that shortcomings of gilt progeny are unlikely due to insufficient nutrient levels in colostrum and milk, and more likely to reduced colostrum and milk intake and their capacity to digest and absorb each component

    Effects of chromium supplementation on physiology, feed intake, and insulin related metabolism in growing pigs subjected to heat stress

    Get PDF
    Improving insulin sensitivity may reduce impacts of heat stress (HS) in pigs by facilitating heat dissipation. Chromium (Cr) has been reported to improve insulin sensitivity in pigs. Therefore, the aim of this experiment was to investigate whether Cr supplementation can mitigate HS in growing pigs. Thirty-six gilts were randomly assigned to 2 diets containing 0 (control) or 400 ppb Cr. After 14 d the supplemented pigs were allocated to either 8 d thermoneutral (20°C constant; TN) or cyclic HS (35°C, 0900 h to 1700 h) conditions and continued their respective diet (n = 9 per group). Growth performance was recorded during the 14-d supplementation period. The physiological responses to HS were monitored by measuring respiration rate, rectal temperature, blood gas chemistry, and feed intake during thermal exposure. Kinetics of plasma glucose, insulin and NEFA were studied by intravenous glucose tolerance test (IVGTT) on d 8 of thermal treatment. Results showed Cr alleviated the HS-increased rectal temperature (P < 0.05) and respiration rate (P < 0.01) at 1300 h and 1600 h during thermal exposure. However, Cr did not mitigate the reduction in average daily feed intake which was reduced by 35% during HS or the HS-induced respiratory alkalosis. Chromium tended to increase average daily gain (0.86 vs. 0.95 kg, P = 0.070) during the 14-d supplementation under TN conditions before thermal exposure, which might be associated with the potential of Cr in improving overall insulin sensitivity, as evidenced by a reduced insulin resistance index calculated by Homeostatic Model Assessment (HOMA-IR; 0.65 vs. 0.51, P = 0.013) and a tendency of reduced fasting plasma insulin concentration (1.97 vs. 1.67 μU/mL, P = 0.094). Heat stress decreased the acute insulin releasing rate (P = 0.012) and consequently slowed glucose clearance rate (P = 0.035) during IVGTT. Besides, HS enlarged the values of area under the curve of NEFA during IVGTT (P < 0.01), indicating a reduced lipid mobilization. In conclusion, HS reduced insulin response to IVGTT. Chromium supplementation exhibited a potential in improving insulin sensitivity and mitigating HS symptoms in growing pigs
    corecore