63 research outputs found

    A fluorometric method for the quantification of cell number in complex differentiating osteoblast-osteocyte cultures

    Get PDF
    Osteoblast/osteocyte cultures continue to emerge as essential tools for bone biology research in vitro. The change in cell number is an important parameter to be considered for investigating osteogenic differentiation. However, there is no reliable method for quantifying absolute cell count in differentiating osteoblast/osteocyte cultures because of their strongly adherent, multi-layered, super-confluent nature, and their accumulated extracellular matrix production which progressively mineralises in vitro. We developed a practical, simple and cost-effective method based on the fluorometric quantification of a nucleic dye, GelRed™, to enumerate cell number in osteoblast/osteocyte cultures. This method may also be suitable for quantifying cell numbers on other mammalian adherent cell typesDongqing Yang, Asiri R. Wijenayaka and Gerald J. Atkin

    Recombinant sclerostin antagonizes effects of ex vivo mechanical loading in trabecular bone and increases osteocyte lacunar size

    Get PDF
    Sclerostin has emerged as an important regulator of bone mass. We have shown that sclerostin can act by targeting late osteoblasts/osteocytes to inhibit bone mineralization and to upregulate osteocyte expression of catabolic factors, resulting in osteocytic osteolysis. Here we sought to examine the effect of exogenous sclerostin on osteocytes in trabecular bone mechanically loaded ex vivo. Bovine trabecular bone cores, with bone marrow removed, were inserted into individual chambers and subjected to daily episodes of dynamic loading. Cores were perfused with either osteogenic media alone or media containing human recombinant sclerostin (rhSCL) (50 ng/ml). Loaded control bone increased in apparent stiffness over time compared with unloaded bone, and this was abrogated in the presence of rhSCL. Loaded bone showed an increase in calcein uptake as a surrogate of mineral accretion, compared with unloaded bone, in which this was substantially inhibited by rhSCL treatment. Sclerostin treatment induced a significant increase in the ionized calcium concentration in the perfusate and the release of -CTX at several time points, an increased mean osteocyte lacunar size, indicative of osteocytic osteolysis, and the expression of catabolism-related genes. Human primary osteocyte-like cultures treated with rhSCL also released -CTX from their matrix. These results suggest that osteocytes contribute directly to bone mineral accretion, and to the mechanical properties of bone. Moreover, it appears that sclerostin, acting on osteocytes, can negate this effect by modulating the dimensions of the lacunocanalicular porosity and the composition of the periosteocyte matrix

    Novel insights into Staphylococcus aureus deep bone infections: the involvement of osteocytes

    Get PDF
    Periprosthetic joint infection (PJI) is a potentially devastating complication of orthopedic joint replacement surgery. PJI with associated osteomyelitis is particularly problematic and difficult to cure. Whether viable osteocytes, the predominant cell type in mineralized bone tissue, have a role in these infections is not clear, although their involvement might contribute to the difficulty in detecting and clearing PJI. Here, using Staphylococcus aureus, the most common pathogen in PJI, we demonstrate intracellular infection of human-osteocyte-like cells in vitro and S. aureus adaptation by forming quasi-dormant small-colony variants (SCVs). Consistent patterns of host gene expression were observed between in vitro-infected osteocyte-like cultures, an ex vivo human bone infection model, and bone samples obtained from PJI patients. Finally, we confirm S. aureus infection of osteocytes in clinical cases of PJI. Our findings are consistent with osteocyte infection being a feature of human PJI and suggest that this cell type may provide a reservoir for silent or persistent infection. We suggest that elucidating the molecular/cellular mechanism(s) of osteocyte-bacterium interactions will contribute to better understanding of PJI and osteomyelitis, improved pathogen detection, and treatment.IMPORTANCE Periprosthetic joint infections (PJIs) are increasing and are recognized as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat and difficult to cure and increases patient mortality 5-fold. Staphylococcus aureus is the most common pathogen causing PJI. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Osteocytes, the major bone cell type, reside in bony caves and tunnels, the lacuno-canalicular system. We report here that S. aureus can infect and reside in human osteocytes without causing cell death both experimentally and in bone samples from patients with PJI. We demonstrate that osteocytes respond to infection by the differential regulation of a large number of genes. S. aureus adapts during intracellular infection of osteocytes by adopting the quasi-dormant small-colony variant (SCV) lifestyle, which might contribute to persistent or silent infection. Our findings shed new light on the etiology of PJI and osteomyelitis in general.Dongqing Yang, Asiri R. Wijenayaka, Lucian B. Solomon, Stephen M. Pederson, David M. Findlay, Stephen P. Kidd, Gerald J. Atkins, Mark S. Smeltzer, Richard P. Novic

    1,25-Dihydroxyvitamin D₃ and extracellular calcium promote mineral deposition via NPP1 activity in a mature osteoblast cell line MLO-A5

    No full text
    Abstract not available.Dongqing Yang, Andrew G. Turner, Asiri R. Wijenayaka, Paul H. Anderson, Howard A. Morris, Gerald J. Atkin

    SaOS2 osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes

    No full text
    The central importance of osteocytes in regulating bone homeostasis is becoming increasingly apparent. However, the study of these cells has been restricted by the relative paucity of cell line models, especially those of human origin. Therefore, we investigated the extent to which SaOS2 human osteosarcoma cells can differentiate into osteocyte-like cells. During culture under the appropriate mineralising conditions, SaOS2 cells reproducibly synthesised a bone-like mineralised matrix and temporally expressed the mature osteocyte marker genes SOST, DMP1, PHEX and MEPE and down-regulated expression of RUNX2 and COL1A1. SaOS2 cells cultured in 3D collagen gels acquired a dendritic morphology, characteristic of osteocytes, with multiple interconnecting cell processes. These findings suggest that SaOS2 cells have the capacity to differentiate into mature osteocyte-like cells under mineralising conditions. PTH treatment of SaOS2 cells resulted in strong down-regulation of SOST mRNA expression at all time points tested. Interestingly, PTH treatment resulted in the up-regulation of RANKL mRNA expression only at earlier stages of differentiation. These findings suggest that the response to PTH is dependent on the differentiation stage of the osteoblast/osteocyte. Together, our results demonstrate that SaOS2 cells can be used as a human model to investigate responses to osteotropic stimuli throughout differentiation to a mature osteocyte-like stage.Matthew Prideaux, Asiri R. Wijenayaka, Duminda D. Kumarasinghe, Renee T. Ormsby, Andreas Evdokiou, David M. Findlay, Gerald J. Atkin

    Early response of the human SOST gene to stimulation by 1alpha,25-dihydroxyvitamin D(3)

    No full text
    Available online 9 December 2015Abstract not availableAsiri R. Wijenayaka, Matthew Prideaux, Dongqing Yang, Howard A. Morris, David M. Findlay, Paul H. Anderson, Gerald J. Atkin

    Isolation of osteocytes from human trabecular bone

    No full text
    Abstract not availableMatthew Prideaux, Christine Schutz, Asiri R. Wijenayaka, David M. Findlay, David G. Campbell, Lucian B. Solomon, Gerald J. Atkin

    Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli

    No full text
    Abstract not availableNobuaki Ito, Asiri R. Wijenayaka, Matthew Prideaux, Masakazu Kogawa, Renee T. Ormsby, Andreas Evdokiou, Lynda F. Bonewald, David M. Findlay, Gerald J. Atkin

    Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNF alpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts

    No full text
    We have recently shown that TNF-related weak inducer of apoptosis (TWEAK) is a mediator of inflammatory bone remodeling. The aim of this study was to investigate the role of TWEAK in modulating human osteoblast activity, and how TWEAK and TNFalpha might interact in this context. Recombinant TWEAK and TNF were both mitogenic for human primary osteoblasts (NHBC). TWEAK dose- and time-dependently regulated the expression of the osteoblast transcription factors RUNX2 and osterix. TWEAK inhibited in vitro mineralization and downregulated the expression of osteogenesis-associated genes. Significantly, TWEAK and TWEAK/TNF induced the expression of the osteoblast differentiation inhibitor and SOST gene product, sclerostin. Sclerostin induction was mitogen-activated protein kinase (MAPK) dependent. The SOST mRNA levels induced by TWEAK were equivalent to or exceeded those seen in steady-state human bone, and the TWEAK/TNF induction of SOST mRNA was recapitulated in fresh cancellous bone explants. TWEAK-induced sclerostin expression was observed in immature osteoblastic cells, both in cycling (Ki67(+)) primary NHBC and in the cell lines MC3T3-E1 and MG-63, as well as in human osteocyte-like cells and in the osteocyte cell line, MLO-Y4. Treatment of NHBC with recombinant human sclerostin mimicked the effects of TWEAK to suppress RUNX2 and osteocalcin (OCN). TWEAK, TNF, and sclerostin treatment of NHBC similarly altered levels of phosphorylated and total GSK3beta and active and total levels of beta-catenin, implying that the Wnt signaling pathway was affected by all three stimuli. Sclerostin also rapidly activated ERK-1/2 MAPK signaling, indicating the involvement of additional signaling pathways. Together, our findings suggest that TWEAK, alone and with TNF, can regulate osteoblast function, at least in part by inducing sclerostin expression. Our results also suggest new roles and modes of action for sclerostin.Cristina Vincent, David M Findlay, Katie J Welldon, Asiri R Wijenayaka, Timothy S Zheng, David R Haynes, Nicola L Fazzalari, Andreas Evdokiou, Gerald J Atkin
    corecore