11 research outputs found

    Gene networks-based mechanistic assessment of drug-induced organ toxicity: a focus on liver and kidney

    Get PDF
    Drug induced organ toxicity is the main problem of the drug development and drug usage in the clinic. The liver and kidneys are the most sensitive organs towards drug induced toxicity. The liver neutralizes xenobiotic to which human are exposed to while the kidneys remove waste products from the blood. Due to their detoxification function, these organs are continuously exposed to high amount of toxicants leading to potential injury. Investigating the molecular and cellular mechanisms contributing to drug-induced liver injury (DILI) and drug-induced kidney injury (DIKI) will open new avenues that can help in the prediction of induced organ injury caused by drugs as well as other xenobiotics.In this thesis, we mapped the dynamics of cellular stress responses in the liver and kidneys upon the exposure of a set of model compounds in order to gain a more holistic insight in DILI and DIKI. We conducted multiple extensive in vitro and in vivo studies to understand the dynamics of these cellular responses and determined the translation of our findings from in vitro to in vivo. Transcriptomics analysis was central in the research which was complemented with other methodologies, such as reporter cell assay, immunohistochemistry, to unravel the mechanisms of drug-induced organ toxicity in both liver and kidney. Drug Delivery Technolog

    Application of high-throughput transcriptomics for mechanism-based biological read-across of short-chain carboxylic acid analogues of valproic acid

    Get PDF
    Chemical read-across is commonly evaluated without particular knowledge of the biological mechanisms leading to observed adverse outcomes in vivo. Integrating data that indicate shared modes of action in humans will strengthen read-across cases. Here we studied transcriptomic responses of primary human hepatocytes (PHH) to a large panel of carboxylic acids to include detailed mode-of-action data as a proof-of-concept for read-across in risk assessment. In rodents, some carboxylic acids, including valproic acid (VPA), are known to cause hepatic steatosis, whereas others do not. We investigated transcriptomics responses of PHHs stimulated for 24 h by 18 structurally different VPA analogues in a concentration range to determine biological similarity in relation to in vivo steatotic potential. Using a targeted high-throughput screening assay we assessed the differential expression of ~3,000 genes covering relevant biological pathways. Differentially expressed gene analysis revealed differences in potency of carboxylic acids and expression patterns were highly similar for structurally similar compounds. Strong clustering occurred for steatosis-positive versus steatosis-negative carboxylic acids. To quantitatively define biological read-across, we combined pathway analysis and weighted gene co-expression network analysis. Active carboxylic acids displayed high similarity in gene network modulation. Importantly, free fatty acid synthesis modulation and stress pathway responses are affected by active carboxylic acids, providing coherent mechanistic underpinning for our findings. Our work shows that transcriptomic analysis of cultured human hepatocytes can reinforce the prediction of liver injury outcome based on quantitative and mechanistic biological data and support the application in read-across.Toxicolog

    Cyclic ruthenium-peptide conjugates as integrin-targeting phototherapeutic prodrugs for the treatment of brain tumors

    Get PDF
    To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 μM for the binding of Λ-[1]Cl2 to αIIbβ3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.Metals in Catalysis, Biomimetics & Inorganic MaterialsAnimal science

    Dynamic modeling of Nrf2 pathway activation in liver cells after toxicant exposure

    Get PDF
    Cells are exposed to oxidative stress and reactive metabolites every day. The Nrf2 signaling pathway responds to oxidative stress by upregulation of antioxidants like glutathione (GSH) to compensate the stress insult and re-establish homeostasis. Although mechanisms describing the interaction between the key pathway constituents Nrf2, Keap1 and p62 are widely reviewed and discussed in literature, quantitative dynamic models bringing together these mechanisms with time-resolved data are limited. Here, we present an ordinary differential equation (ODE) based dynamic model to describe the dynamic response of Nrf2, Keap1, Srxn1 and GSH to oxidative stress caused by the soft-electrophile diethyl maleate (DEM). The time-resolved data obtained by single-cell confocal microscopy of green fluorescent protein (GFP) reporters and qPCR of the Nrf2 pathway components complemented with siRNA knock down experiments, is accurately described by the calibrated mathematical model. We show that the quantitative model can describe the activation of the Nrf2 pathway by compounds with a different mechanism of activation, including drugs which are known for their ability to cause drug induced liver-injury (DILI) i.e., diclofenac (DCF) and omeprazole (OMZ). Finally, we show that our model can reveal differences in the processes leading to altered activation dynamics amongst DILI inducing drugs.Toxicolog

    Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells

    Get PDF
    Retinaldehyde dehydrogenases belong to a superfamily of enzymes that regulate cell differentiation and are responsible for detoxification of anticancer drugs. Chemical tools and methods are of great utility to visualize and quantify aldehyde dehydrogenase (ALDH) activity in health and disease. Here, we present the discovery of a first-in-class chemical probe based on retinal, the endogenous substrate of retinal ALDHs. We unveil the utility of this probe in quantitating ALDH isozyme activity in a panel of cancer cells via both fluorescence and chemical proteomic approaches. We demonstrate that our probe is superior to the widely used ALDEFLUOR assay to explain the ability of breast cancer (stem) cells to produce all-trans retinoic acid. Furthermore, our probe revealed the cellular selectivity profile of an advanced ALDH1A1 inhibitor, thereby prompting us to investigate the nature of its cytotoxicity. Our results showcase the application of substrate-based probes in interrogating pathologically relevant enzyme activities. They also highlight the general power of chemical proteomics in driving the discovery of new biological insights and its utility to guide drug discovery efforts.Bio-organic SynthesisMolecular Physiolog

    Protectiveness of NAM-based hazard assessment: which testing scope is required?

    Get PDF
    Hazard assessment (HA) requires toxicity tests to allow deriving protective points of departure (PoDs) for risk assessment irrespective of a compound's mode of action (MoA). The scope of in vitro test batteries (ivTB) thereby necessitated for systemic toxicity is still unclear. We explored the protectiveness regarding systemic toxicity of an ivTB with a scope, which was guided by previous findings from rodent studies, where examining six main targets, including liver and kidney, was sufficient to predict the guideline scope-based PoD with high probability. The ivTB comprises human in vitro models representing liver, kidney, lung and the neuronal system covering transcriptome, mitochondrial dysfunction and neuronal outgrowth. Additionally, 32 CALUX®- and 10 HepG2 BAC-GFP reporters cover a broad range of disturbance mechanisms. Eight compounds were chosen for causing adverse effects such as immunotoxicity or anemia in vivo, i.e., effects not directly covered by assays in the ivTB. PoDs derived from the ivTB and from oral repeated dose studies in rodents were extrapolated to maximum unbound plasma concentrations for comparison. The ivTB-based PoDs were one to five orders of magnitude lower than in vivo PoDs for six of eight compounds, implying that they were protective. The extent of in vitro response varied across test compounds. Especially for hematotoxic substances, the ivTB showed either no response or only cytotoxicity. Assays better capturing this type of hazard would be needed to complement the ivTB. This study highlights the potentially broad applicability of ivTBs for deriving protective PoDs of compounds with unknown MoA.Toxicolog

    A network-based transcriptomic landscape of HepG2 cells uncovering causal gene-cytotoxicity interactions underlying drug-induced liver injury

    Get PDF
    Drug-induced liver injury (DILI) remains the main reason for drug development attritions largely due to poor mechanistic understanding. Toxicogenomic to interrogate the mechanism of DILI has been broadly performed. Gene co-regulation network-based transcriptome analysis is a bioinformatics approach that potentially contributes to improve mechanistic interpretation of toxicogenomic data. Here we performed an extensive concentration time course response-toxicogenomic study in the HepG2 cell line exposed to 20 DILI compounds, 7 reference compounds for stress response pathways, and 10 agonists for cytokines and growth factor receptors. We performed whole transcriptome targeted RNA sequencing to more than 500 conditions to and applied weighted gene co-regulated network analysis (WGCNA) to the transcriptomics data followed by identification of gene co-regulated networks (modules) that were strongly modulated upon the exposure of DILI compounds. Preservation analysis on the module responses of HepG2 and PHH demonstrated highly preserved adaptive stress response gene co-regulated networks. We correlated gene co-regulated networks with cell death onset and causal relationships of 67 critical target genes of these modules with onset of cell death was evaluated using RNA interference screening. We identified GTPBP2, HSPA1B, IRF1, SIRT1 and TSC22D3 as essential modulators of DILI compound-induced cell death. These genes were also induced by DILI compounds in PHH. Altogether, we demonstrate the application of large transcriptome datasets combined with network-based analysis and biological validation to uncover the candidate determinants of DILI.Toxicolog

    Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes

    Get PDF
    Toxicity is not only a function of damage mechanisms, but is also determined by cellular resilience factors. Glutathione has been reported as essential element to counteract negative influences. The present work hence pursued the question how intracellular glutathione can be elevated transiently to render cells more resistant toward harmful conditions. The antibiotic nitrofurantoin (NFT) was identified to stimulate de novo synthesis of glutathione in the human hepatoma cell line, HepG2, and in primary human hepatocytes. In intact cells, activation of NFT yielded a radical anion, which subsequently initiated nuclear-factor-erythroid 2-related-factor-2 (Nrf2)-dependent induction of glutamate cysteine ligase (GCL). Application of siRNA-based intervention approaches confirmed the involvement of the Nrf2-GCL axis in the observed elevation of intracellular glutathione levels. Quantitative activation of Nrf2 by NFT, and the subsequent rise in glutathione, were similar as observed with the potent experimental Nrf2 activator diethyl maleate. The elevation of glutathione levels, observed even 48 h after withdrawal of NFT, rendered cells resistant to different stressors such as the mitochondrial inhibitor rotenone, the redox cycler paraquat, the proteasome inhibitors MG-132 or bortezomib, or high concentrations of NFT. Repurpose of the antibiotic NFT as activator of Nrf2 could thus be a promising strategy for a transient and targeted activation of the endogenous antioxidant machinery. Graphical abstract.Toxicolog

    Identifying multiscale translational safety biomarkers using a network-based systems approach

    No full text
    Animal testing is the current standard for drug and chemicals safety assessment, but hazards translation to human is uncertain. Human in vitro models can address the species translation but might not replicate in vivo complexity. Herein, we propose a network-based method addressing these translational multiscale problems that derives in vivo liver injury biomarkers applicable to in vitro human early safety screening. We applied weighted correlation network analysis (WGCNA) to a large rat liver transcriptomic dataset to obtain co-regulated gene clusters (modules). We identified modules statistically associated with liver pathologies, including a module enriched for ATF4-regulated genes as associated with the occurrence of hepatocellular single-cell necrosis, and as preserved in human liver in vitro models. Within the module, we identified TRIB3 and MTHFD2 as a novel candidate stress biomarkers, and developed and used BAC-eGFPHepG2 reporters in a compound screening, identifying compounds showing ATF4-dependent stress response and potential early safety signals

    Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells

    No full text
    Retinaldehyde dehydrogenases belong to a superfamily of enzymes that regulate cell differentiation and are responsible for detoxification of anticancer drugs. Chemical tools and methods are of great utility to visualize and quantify aldehyde dehydrogenase (ALDH) activity in health and disease. Here, we present the discovery of a first-in-class chemical probe based on retinal, the endogenous substrate of retinal ALDHs. We unveil the utility of this probe in quantitating ALDH isozyme activity in a panel of cancer cells via both fluorescence and chemical proteomic approaches. We demonstrate that our probe is superior to the widely used ALDEFLUOR assay to explain the ability of breast cancer (stem) cells to produce all-trans retinoic acid. Furthermore, our probe revealed the cellular selectivity profile of an advanced ALDH1A1 inhibitor, thereby prompting us to investigate the nature of its cytotoxicity. Our results showcase the application of substrate-based probes in interrogating pathologically relevant enzyme activities. They also highlight the general power of chemical proteomics in driving the discovery of new biological insights and its utility to guide drug discovery efforts.Bio-organic SynthesisMolecular Physiolog
    corecore