2,149 research outputs found
Introduction and Expression of a Rabbit β-globin Gene in Mouse Fibroblasts
The cloned chromosomal rabbit ß-globin gene has been introduced into mouse fibroblasts by DNA-mediated gene transfer (transformation). In this report, we examine the expression of the rabbit gene in six independent transformants that contain from 1 to 20 copies of the cloned globin gene. Rabbit globin transcripts were detected in two of these transformants at steady-state concentrations of 5 and 2 copies per cell. The globin transcripts from one cell line are polyadenylylated and migrate as 9S RNA on methylmercury gels. These transcripts reflect correct processing of the two intervening sequences but lack 48 ± 5 nucleotides present at the 5' terminus of rabbit erythrocyte globin mRNA
Facilitated sequence counting and assembly by template mutagenesis
Presently, inferring the long-range structure of the DNA templates is limited by short read lengths. Accurate template counts suffer from distortions occurring during PCR amplification. We explore the utility of introducing random mutations in identical or nearly identical templates to create distinguishable patterns that are inherited during subsequent copying. We simulate the applications of this process under assumptions of error-free sequencing and perfect mapping, using cytosine deamination as a model for mutation. The simulations demonstrate that within readily achievable conditions of nucleotide conversion and sequence coverage, we can accurately count the number of otherwise identical molecules as well as connect variants separated by long spans of identical sequence. We discuss many potential applications, such as transcript profiling, isoform assembly, haplotype phasing, and de novo genome assembly
Expression and rearrangement of the ROS1 gene in human glioblastoma cells
The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, we found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, we detected a potentially activating mutation at the ROS1 locus
Induction of Plasminogen Activator in Cultured Cells by Macrocyclic Plant Diterpene Esters and Other Agents Related to Tumor Promotion
In vitro systems that are responsive to tumor-promoting agents may facilitate the identification of such agents and the analysis of their mode of action. We have previously reported that the potent tumor promoter phorbol-12-myristate-13-acetate induces the synthesis of the enzyme plasminogen activator in cultured chick embryo fibroblasts. We have, therefore, tested various compounds for their ability to induce plasminogen activator in chicken embryo fibroblasts. Among these, phorbol esters and other macrocyclic diterpene esters isolated from species of the families Euphorbiaceae and Thymelaeaceae were potent inducers of plasminogen activator. These compounds maximally induced enzyme to the same levels, although they differed in their relative molar potencies. Structural requirements for in vitro activity paralleled the requirements for activity in vivo. These results indicate that induction of plasminogen activator is a useful marker for the biologically active macrocyclic diterpene esters. On the other hand, tumor-promoting agents such as anthralin, cantharidin, Tween 60, and tobacco leaf extract failed to induce plasminogen activator
Target inference from collections of genomic intervals
Finding regions of the genome that are significantly recurrent in noisy data are a common but difficult problem in present day computational biology. Cores of recurrent events (CORE) is a computational approach to solving this problem that is based on a formalized notion by which "core" intervals explain the observed data, where the number of cores is the "depth" of the explanation. Given that formalization, we implement CORE as a combinatorial optimization procedure with depth chosen from considerations of statistical significance. An important feature of CORE is its ability to explain data with cores of widely varying lengths. We examine the performance of this system with synthetic data, and then provide two demonstrations of its utility with actual data. Applying CORE to a collection of DNA copy number profiles from single cells of a given tumor, we determine tumor population phylogeny and find the features that separate subpopulations. Applying CORE to comparative genomic hybridization data from a large set of tumor samples, we define regions of recurrent copy number aberration in breast cancer
- …