2,590 research outputs found

    In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization.

    Get PDF
    In the development of hyphal germ tubes of Candida albicans, a band of septin forms at the base of the germ tube (basal septin band). Later, a septin ring forms, which organizes the first septum within the germ tube (septin ring). We have investigated the role of the Nim1 kinases, Gin4 and Hsl1, in the formation of these septin structures. We show that during germ tube formation, Gin4 is required for the organization of the septin ring but not the basal septin band. Hsl1 is not required for the formation of either septin rings or basal bands. Unexpectedly, we found that both gin4Delta and hsl1Delta mutants form pseudohyphae constitutively, in a fashion that in the case of gin4Delta, is partly independent of Swe1. Gin4-depleted pseudohyphae are unable to form hyphae when challenged with serum, but this can be overcome by ectopic expression of Gin4 from the MET3 promoter. Thus, Gin4 may regulate the developmental switch from pseudohyphae to hyphae

    A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant pells.

    Get PDF
    BACKGROUND: Cell culture methods allow the detailed observations of individual plant cells and their internal processes. Whereas cultured cells are more amenable to microscopy, they have had limited use when studying the complex interactions between cell populations and responses to external signals associated with tissue and whole plant development. Such interactions result in the diverse range of cell shapes observed in planta compared to the simple polygonal or ovoid shapes in vitro. Microfluidic devices can isolate the dynamics of single plant cells but have restricted use for providing a tissue-like and fibrous extracellular environment for cells to interact. A gap exists, therefore, in the understanding of spatiotemporal interactions of single plant cells interacting with their three-dimensional (3D) environment. A model system is needed to bridge this gap. For this purpose we have borrowed a tool, a 3D nano- and microfibre tissue scaffold, recently used in biomedical engineering of animal and human tissue physiology and pathophysiology in vitro. RESULTS: We have developed a method of 3D cell culture for plants, which mimics the plant tissue environment, using biocompatible scaffolds similar to those used in mammalian tissue engineering. The scaffolds provide both developmental cues and structural stability to isolated callus-derived cells grown in liquid culture. The protocol is rapid, compared to the growth and preparation of whole plants for microscopy, and provides detailed subcellular information on cells interacting with their local environment. We observe cell shapes never observed for individual cultured cells. Rather than exhibiting only spheroid or ellipsoidal shapes, the cells adapt their shape to fit the local space and are capable of growing past each other, taking on growth and morphological characteristics with greater complexity than observed even in whole plants. Confocal imaging of transgenic Arabidopsis thaliana lines containing fluorescent microtubule and actin reporters enables further study of the effects of interactions and complex morphologies upon cytoskeletal organisation both in 3D and in time (4D). CONCLUSIONS: The 3D culture within the fibre scaffolds permits cells to grow freely within a matrix containing both large and small spaces, a technique that is expected to add to current lithographic technologies, where growth is carefully controlled and constricted. The cells, once seeded in the scaffolds, can adopt a variety of morphologies, demonstrating that they do not need to be part of a tightly packed tissue to form complex shapes. This points to a role of the immediate nano- and micro-topography in plant cell morphogenesis. This work defines a new suite of techniques for exploring cell-environment interactions

    A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant cells

    Get PDF
    Background: Cell culture methods allow the detailed observations of individual plant cells and their internal processes. Whereas cultured cells are more amenable to microscopy, they have had limited use when studying the complex interactions between cell populations and responses to external signals associated with tissue and whole plant development. Such interactions result in the diverse range of cell shapes observed in planta compared to the simple polygonal or ovoid shapes in vitro. Microfluidic devices can isolate the dynamics of single plant cells but have restricted use for providing a tissue-like and fibrous extracellular environment for cells to interact. A gap exists, therefore, in the understanding of spatiotemporal interactions of single plant cells interacting with their three-dimensional (3D) environment. A model system is needed to bridge this gap. For this purpose we have borrowed a tool, a 3D nano- and microfibre tissue scaffold, recently used in biomedical engineering of animal and human tissue physiology and pathophysiology in vitro. Results: We have developed a method of 3D cell culture for plants, which mimics the plant tissue environment, using biocompatible scaffolds similar to those used in mammalian tissue engineering. The scaffolds provide both developmental cues and structural stability to isolated callus-derived cells grown in liquid culture. The protocol is rapid, compared to the growth and preparation of whole plants for microscopy, and provides detailed subcellular information on cells interacting with their local environment. We observe cell shapes never observed for individual cultured cells. Rather than exhibiting only spheroid or ellipsoidal shapes, the cells adapt their shape to fit the local space and are capable of growing past each other, taking on growth and morphological characteristics with greater complexity than observed even in whole plants. Confocal imaging of transgenic Arabidopsis thaliana lines containing fluorescent microtubule and actin reporters enables further study of the effects of interactions and complex morphologies upon cytoskeletal organisation both in 3D and in time (4D). Conclusions: The 3D culture within the fibre scaffolds permits cells to grow freely within a matrix containing both large and small spaces, a technique that is expected to add to current lithographic technologies, where growth is carefully controlled and constricted. The cells, once seeded in the scaffolds, can adopt a variety of morphologies, demonstrating that they do not need to be part of a tightly packed tissue to form complex shapes. This points to a role of the immediate nano- and micro-topography in plant cell morphogenesis. This work defines a new suite of techniques for exploring cell-environment interactions

    Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells

    Get PDF
    The process by which plant cells expand and gain shape has presented a challenge for researchers. Current models propose that these processes are driven by turgor pressure acting on the cell wall. Using nanoimaging, we show that the cell wall contains pectin nanofilaments that possess an intrinsic expansion capacity. Additionally, we use growth models containing such structures to show that a complex plant cell shape can derive from chemically induced local and polarized expansion of the pectin nanofilaments without turgor-driven growth. Thus, the plant cell wall, outside of the cell itself, is an active participant in shaping plant cells. Extracellular matrix function may similarly guide cell shape in other kingdoms, including Animalia

    pH-sensitivity of YFP provides an intracellular indicator of programmed cell death.

    Get PDF
    BACKGROUND: Programmed cell death (PCD) is an essential process for the life cycle of all multicellular organisms. In higher plants however, relatively little is known about the cascade of genes and signalling molecules responsible for the initiation and execution of PCD. To aid with the discovery and analysis of plant PCD regulators, we have designed a novel cell death assay based on low cytosolic pH as a marker of PCD. RESULTS: The acidification that occurs in the cytosol during plant PCD was monitored by way of the extinction of YFP fluorescence at low pH. This fluorescence was recovered experimentally when bringing the intracellular pH back to 7, demonstrating that there was no protein degradation of YFP. Because it uses YFP, the assay is none-destructive, does not interfere with the PCD process and allows time-lapse studies to be carried out. In addition, changes of sub-cellular localisation can be visualised during PCD using the protein of interest fused to RFP. Coupled to a transient expression system, this pH-based assay can be used to functionally analyse genes involved in PCD, using point mutations or co-expressing PCD regulators. Transfecting mBAX and AtBI-1in onion epidermal cells showed that the pH shift is downstream of PCD suppression by AtBI-1. In addition, this method can be used to score PCD in tissues of stably transformed transgenic lines. As proof of principle, we show the example of YFP extinction during xylogenesis in Arabidopsis. This demonstrates that the assay is applicable to PCD studies in a variety of tissues. CONCLUSIONS: The observation that YFP fluorescence is lost during the plant PCD process provides a new tool to study the genetic regulation and cell biology of the process. In addition, plant cell biologists should make a note of this effect of PCD on YFP fluorescence to avoid misinterpretation of their data and to select a pH insensitive reporter if appropriate. This method represents an efficient and streamlined tool expected to bring insights on the process leading to the pH shift occurring during PCD

    Cell Cycle Control by Nuclear Sequestration of CDC20 and CDH1 mRNA in Plant Stem Cells.

    Get PDF
    In eukaryotes, most RNA molecules are exported into the cytoplasm after transcription. Long noncoding RNAs (lncRNAs) reside and function primarily inside the nucleus, but nuclear localization of mRNAs has been considered rare in both animals and plants. Here we show that Arabidopsis anaphase-promoting complex/cyclosome (APC/C) coactivator genes CDC20 and CCS52B (CDH1 ortholog) are co-expressed with their target cyclin B genes (CYCBs) during mitosis. CYCB transcripts can be exported and translated; however, CDC20 and CCS52B mRNAs are confined to the nucleus at prophase, and the cognate proteins are not translated until the redistribution of the mRNAs to the cytoplasm after nuclear envelope breakdown (NEBD) at prometaphase. The 5' untranslated region (UTR) plays dual roles in CDC20 mRNA nuclear localization and translation. Mitotic accumulation of CDC20 and CCS52B transcripts enables the timely and rapid activation of APC/C, while the nuclear sequestration of these transcripts at prophase appears to protect cyclins from precocious degradation
    corecore