10 research outputs found

    Enhanced Photodegradation of TiO\u3csub\u3e2\u3c/sub\u3e-Containing Poly (ε-Caprolactone)/Poly(lactic Acid) Blends

    No full text
    The calamitous accumulation of plastic waste in the environment, especially single-use disposables, calls for new approaches to materials design. One method to address the persistence of plastics beyond their intended use is to impart them with functionalities that will either allow for their recyclability or their degradation to basic natural components. This work focuses on the fabrication of photodegradable polyester blends and investigates the impact of compatibilization on photodegradation rates. Specifically, we blended poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) polymers by (reactive) extrusion in the presence or absence of dicumyl peroxide (DCP), a radical generator, and titanium dioxide (TiO2), an inorganic photocatalyst. We examined the effects of DCP and TiO2 loadings as well as copolymer composition on the thermomechanical properties, photodegradability, and morphology. We found that the inclusion of TiO2 dramatically increased flexural moduli and photodegradation rates in both dry and wet conditions, while reactive compatibilization had little effect of the tested properties. This simple and scalable approach is promising to fabricate materials that can readily photodegrade

    BTB-Kelch protein Krp1 regulates proliferation and differentiation of myoblasts

    No full text
    The BTB-Kelch protein Krp1 is highly and specifically expressed in skeletal muscle, where it is proposed to have a role in myofibril formation. We observed significant upregulation of Krp1 in C2 cells early in myoblast differentiation, well before myofibrillogenesis. Krp1 has a role in cytoskeletal organization and cell motility; since myoblast migration and elongation/alignment are important events in early myogenesis, we hypothesized that Krp1 is involved with earlier regulation of differentiation. Krp1 protein levels were detectable by 24 h after induction of differentiation in C2 cells and were significantly upregulated by 48 h, i.e., following the onset myogenin expression and preceding myosin heavy chain (MHC) upregulation. Upregulation of Krp1 required a myogenic stimulus as signaling derived from increased myoblast cell density was insufficient to activate Krp1 expression. Examination of putative Krp1 proximal promoter regions revealed consensus E box elements associated with myogenic basic helix-loop-helix binding. The activity of a luciferase promoter-reporter construct encompassing this 2,000-bp region increased in differentiating C2 myoblasts and in C2 cells transfected with myogenin and/or MyoD. Knockdown of Krp1 via short hairpin RNA resulted in increased C2 cell number and proliferation rate as assessed by bromodeoxyuridine incorporation, whereas overexpression of Krp1-myc had the opposite effect; apoptosis was unchanged. No effects of changed Krp1 protein levels on cell migration were observed, either by scratch wound assay or live cell imaging. Paradoxically, both knockdown and overexpression of Krp1 inhibited myoblast differentiation assessed by expression of myogenin, MEF2C, MHC, and cell fusion

    Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    No full text
    corecore