48 research outputs found

    Clinical report of cervical arthroplasty in management of spondylotic myelopathy in Chinese

    Get PDF
    OBJECTIVES: To investigate clinical effects and manual operational point of Bryan cervical disc prosthesis in Chinese, to observe the stability and range of movement (ROM) post-operatively. METHODS AND MATERIALS: From 2003,12 to 2005,12, Bryan disc prosthesis replacement applied in 83 cases (102 levels) of cervical spondylotic myelopathy (CSM) after anterior decompression in our hospital. Clinical (JOA grade and Odom's scale) and radiological (X-ray of flexion, extension; left and right bending position) follow-up was performed. Systemic radiographic study about stability and ROM of replaced level post operationally were measured. CT or MRI scans were applied in all cases to evaluate the signs of the prosthesis deflexion and hetero-ossification in the replaced levels. RESULTS: At least 12 months follow-up were done in 65/83 of these paients. All of 83 patients were improved according to Odsm's scale. JOA score increased from average 8.7 to 15.5. There was no prosthesis subsidence. Replaced segment achieved stability and restored partial of normal ROM 4.73Ā°(3.7Ā°ā€“5.9Ā°) early postoperation and 8.12Ā°(5.8Ā°ā€“13.6Ā°) more than 12 months postoperation in flex and extension position. No obvious loss of lordosis was found. CT or MRI follow-up shows position deflexion of the prosthesis metal endplates (<1.5 mm) in 14/77 levels and (1.5~3 mm) in 4/77. heter-ossification was found in the replaced levels only in 2 cases. CONCLUSION: Byran cervical disc prosthesis restored motion to the level of the intact segment in flexion-extension and lateral bending in post-operative images. At the same time, it can achieve good anterior decompression treatment effect and immediate stability in replaced 1 or 2 levels, and which is a new choice for the treatment of CSM

    Update on cervical disc arthroplasty: where are we and where are we going?

    Get PDF
    Despite the very good results of anterior cervical discectomy and fusion, there are concerns of adjacent level degeneration. For this reason, interest has grown in the potential for motion sparing alternatives. Cervical disc arthroplasty is thus evolving as a potential alternative to fusion. Specific design characteristic and implants will be reviewed and outcomes summarized

    Identification of a hypoxia-regulated miRNA signature in bladder cancer and a role for miR-145 in hypoxia-dependent apoptosis

    Get PDF
    Background: Hypoxia leads to the stabilisation of the hypoxia-inducible factor (HIF) transcription factor that drives the expression of target genes including microRNAs (miRNAs). MicroRNAs are known to regulate many genes involved in tumourigenesis. The aim of this study was to identify hypoxia-regulated miRNAs (HRMs) in bladder cancer and investigate their functional significance. Methods: Bladder cancer cell lines were exposed to normoxic and hypoxic conditions and interrogated for the expression of 384 miRNAs by qPCR. Functional studies were carried out using siRNA-mediated gene knockdown and chromatin immunoprecipitations. Apoptosis was quantified by annexin V staining and flow cytometry. Results: The HRM signature for NMI bladder cancer lines includes miR-210, miR-193b, miR-145, miR-125-3p, miR-708 and miR-517a. The most hypoxia-upregulated miRNA was miR-145. The miR-145 was a direct target of HIF-1a and two hypoxia response elements were identified within the promoter region of the gene. Finally, the hypoxic upregulation of miR-145 contributed to increased apoptosis in RT4 cells. Conclusions: We have demonstrated the hypoxic regulation of a number of miRNAs in bladder cancer. We have shown that miR- 145 is a novel, robust and direct HIF target gene that in turn leads to increased cell death in NMI bladder cancer cell lines

    Engagement Across Developmental Periods

    Get PDF
    The goal of this chapter is to provide a cohesive developmental framework and foundation for which to understand student engagement across early childhood, middle childhood, and adolescence. Guided by the bioecological theory of human development and the person-environment fit perspective, this chapter extends Finn\u27s participation-identification model of engagement by mapping student engagement within a larger developmental sequence. This chapter discusses student engagement within specific developmental periods that are tied to the developmental tasks, opportunities, and challenges unique to early childhood, middle childhood, and adolescence. Student engagement is found to be a nuanced developmental outcome, and the differences may be a result of the maturation of biological, cognitive, and socioemotional developmental tasks and the changing contextual landscape for the children and adolescents. Recommendations for future research as well as policy implications are also discussed

    Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty

    No full text
    An experimental in vitro biomechanical study was conducted on human cadaveric spines to evaluate the motion segment (C4ā€“C5) and global subaxial cervical spine motion after placement of a cervical arthroplasty device (Altia TDIā„¢,Amedica, Salt Lake City, UT) as compared to both the intact spine and a single-level fusion. Six specimens (C2ā€“C7) were tested in flexion/extension, lateral bending, and axial rotation under aĀ Ā±Ā 1.5Ā Nm moment with a 100Ā N axial follower load. Following the intact spine was tested; the cervical arthroplasty device was implanted at C4ā€“C5 and tested. Then, a fusion using lateral mass fixation and an anterior plate was simulated and tested. Stiffness and range of motion (ROM) data were calculated. The ROM of the C4ā€“C5 motion segment with the arthroplasty device was similar to that of the intact spine in flexion/extension and slightly less in lateral bending and rotation, while the fusion construct allowed significantly less motion in all directions. The fusion construct caused broader effects of increasing motion in the remaining segments of the subaxial cervical spine, whereas the TDI did not alter the adjacent and remote motion segments. The fusion construct was also far stiffer in all motion planes than the intact motion segment and the TDI, while the artificial disc treated level was slightly stiffer than the intact segment. The Altia TDI allows for a magnitude of motion similar to that of the intact spine at the treated and adjacent levels in the in vitro setting
    corecore