1,944 research outputs found
Random RNA under tension
The Laessig-Wiese (LW) field theory for the freezing transition of random RNA
secondary structures is generalized to the situation of an external force. We
find a second-order phase transition at a critical applied force f = f_c. For f
f_c, the extension L as a function of
pulling force f scales as (f-f_c)^(1/gamma-1). The exponent gamma is calculated
in an epsilon-expansion: At 1-loop order gamma = epsilon/2 = 1/2, equivalent to
the disorder-free case. 2-loop results yielding gamma = 0.6 are briefly
mentioned. Using a locking argument, we speculate that this result extends to
the strong-disorder phase.Comment: 6 pages, 10 figures. v2: corrected typos, discussion on locking
argument improve
Microscopic Model versus Systematic Low-Energy Effective Field Theory for a Doped Quantum Ferromagnet
We consider a microscopic model for a doped quantum ferromagnet as a test
case for the systematic low-energy effective field theory for magnons and
holes, which is constructed in complete analogy to the case of quantum
antiferromagnets. In contrast to antiferromagnets, for which the effective
field theory approach can be tested only numerically, in the ferromagnetic case
both the microscopic and the effective theory can be solved analytically. In
this way the low-energy parameters of the effective theory are determined
exactly by matching to the underlying microscopic model. The low-energy
behavior at half-filling as well as in the single- and two-hole sectors is
described exactly by the systematic low-energy effective field theory. In
particular, for weakly bound two-hole states the effective field theory even
works beyond perturbation theory. This lends strong support to the quantitative
success of the systematic low-energy effective field theory method not only in
the ferromagnetic but also in the physically most interesting antiferromagnetic
case.Comment: 34 pages, 1 figur
Characterization of CoRoT target fields with BEST: Identification of periodic variable stars in the IR01 field
We report on observations of the CoRoT IR01 field with the Berlin Exoplanet
Search Telescope (BEST). BEST is a small aperture telescope with a wide field
of view (FOV). It is dedicated to search for variable stars within the target
fields of the CoRoT space mission to aid in minimizing false-alarm rates and
identify potential targets for additional science. CoRoT's observational
programm started in February 2007 with the "initial run" field (IR01) observed
for about two months. BEST observed this field for 12 nights spread over three
months in winter 2006. From the total of 30426 stars observed in the IR01 field
3769 were marked as suspected variable stars and 54 from them showed clear
periodicity. From these 19 periodic stars are within the part of the CoRoT FOV
covered in our data set
Ebbie: automated analysis and storage of small RNA cloning data using a dynamic web server
BACKGROUND: DNA sequencing is used ubiquitously: from deciphering genomes[1] to determining the primary sequence of small RNAs (smRNAs) [2-5]. The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products. Recently we completed a smRNA cloning project involving tobacco plants, where analysis was required for ~700 smRNA sequences[6]. Finding no easily accessible research tool to enter and analyze smRNA sequences we developed Ebbie to assist us with our study. RESULTS: Ebbie is a semi-automated smRNA cloning data processing algorithm, which initially searches for any substring within a DNA sequencing text file, which is flanked by two constant strings. The substring, also termed smRNA or insert, is stored in a MySQL and BlastN database. These inserts are then compared using BlastN to locally installed databases allowing the rapid comparison of the insert to both the growing smRNA database and to other static sequence databases. Our laboratory used Ebbie to analyze scores of DNA sequencing data originating from an smRNA cloning project[6]. Through its built-in instant analysis of all inserts using BlastN, we were able to quickly identify 33 groups of smRNAs from ~700 database entries. This clustering allowed the easy identification of novel and highly expressed clusters of smRNAs. Ebbie is available under GNU GPL and currently implemented on CONCLUSION: Ebbie was designed for medium sized smRNA cloning projects with about 1,000 database entries [6-8].Ebbie can be used for any type of sequence analysis where two constant primer regions flank a sequence of interest. The reliable storage of inserts, and their annotation in a MySQL database, BlastN[9] comparison of new inserts to dynamic and static databases make it a powerful new tool in any laboratory using DNA sequencing. Ebbie also prevents manual mistakes during the excision process and speeds up annotation and data-entry. Once the server is installed locally, its access can be restricted to protect sensitive new DNA sequencing data. Ebbie was primarily designed for smRNA cloning projects, but can be applied to a variety of RNA and DNA cloning projects[2,3,10,11]
Systematic Low-Energy Effective Field Theory for Magnons and Holes in an Antiferromagnet on the Honeycomb Lattice
Based on a symmetry analysis of the microscopic Hubbard and t-J models, a
systematic low-energy effective field theory is constructed for hole-doped
antiferromagnets on the honeycomb lattice. In the antiferromagnetic phase,
doped holes are massive due to the spontaneous breakdown of the
symmetry, just as nucleons in QCD pick up their mass from spontaneous chiral
symmetry breaking. In the broken phase the effective action contains a
single-derivative term, similar to the Shraiman-Siggia term in the square
lattice case. Interestingly, an accidental continuous spatial rotation symmetry
arises at leading order. As an application of the effective field theory we
consider one-magnon exchange between two holes and the formation of two-hole
bound states. As an unambiguous prediction of the effective theory, the wave
function for the ground state of two holes bound by magnon exchange exhibits
-wave symmetry.Comment: 33 pages, 6 figure
Scaling regimes and critical dimensions in the Kardar-Parisi-Zhang problem
We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise
correlator R(q) ~ (1 + w q^{-2 \rho}) in Fourier space, as a function of \rho
and the spatial dimension d. By means of a stochastic Cole-Hopf transformation,
the critical and correction-to-scaling exponents at the roughening transition
are determined to all orders in a (d - d_c) expansion. We also argue that there
is a intriguing possibility that the rough phases above and below the lower
critical dimension d_c = 2 (1 + \rho) are genuinely different which could lead
to a re-interpretation of results in the literature.Comment: Latex, 7 pages, eps files for two figures as well as Europhys. Lett.
style files included; slightly expanded reincarnatio
Homogeneous versus Spiral Phases of Hole-doped Antiferromagnets: A Systematic Effective Field Theory Investigation
Using the low-energy effective field theory for magnons and holes -- the
condensed matter analog of baryon chiral perturbation theory for pions and
nucleons in QCD -- we study different phases of doped antiferromagnets. We
systematically investigate configurations of the staggered magnetization that
provide a constant background field for doped holes. The most general
configuration of this type is either constant itself or it represents a spiral
in the staggered magnetization. Depending on the values of the low-energy
parameters, a homogeneous phase, a spiral phase, or an inhomogeneous phase is
energetically favored. The reduction of the staggered magnetization upon doping
is also investigated.Comment: 35 pages, 5 figure
Systematic Low-Energy Effective Field Theory for Electron-Doped Antiferromagnets
In contrast to hole-doped systems which have hole pockets centered at , in lightly electron-doped antiferromagnets
the charged quasiparticles reside in momentum space pockets centered at
or . This has important consequences for
the corresponding low-energy effective field theory of magnons and electrons
which is constructed in this paper. In particular, in contrast to the
hole-doped case, the magnon-mediated forces between two electrons depend on the
total momentum of the pair. For the one-magnon exchange
potential between two electrons at distance is proportional to ,
while in the hole case it has a dependence. The effective theory
predicts that spiral phases are absent in electron-doped antiferromagnets.Comment: 25 pages, 7 figure
Critical Exponents of the KPZ Equation via Multi-Surface Coding Numerical Simulations
We study the KPZ equation (in D = 2, 3 and 4 spatial dimensions) by using a
RSOS discretization of the surface. We measure the critical exponents very
precisely, and we show that the rational guess is not appropriate, and that 4D
is not the upper critical dimension. We are also able to determine very
precisely the exponent of the sub-leading scaling corrections, that turns out
to be close to 1 in all cases. We introduce and use a {\em multi-surface
coding} technique, that allow a gain of order 30 over usual numerical
simulations.Comment: 10 pages, 8 eps figures (2 figures added). Published versio
Identification of Variable Stars in COROT's First Main Observing Field (LRc1)
The COROT space mission will monitor several target fields for up to 150 days
to perform asteroseismology and to search for extrasolar planets by photometric
transits. Variable stars in the target fields are important objects for
additional scientific studies but can also disturb the search for planetary
transits. A variability characterization of the target fields prior to COROT
observations is therefore important for two reasons: to find interesting
variable stars to monitor further and to make an analysis of the impact of the
variable stars on detecting extrasolar planet transits with COROT. The Berlin
Exoplanet Search Telescope (BEST) is a small wide-angle telescope dedicated to
high-precision photometry. It has observed a 9 square degree field of view
centered at (alpha, delta)=(19h00m00.0s, +00deg01'55.2") (J2000.0) over 98
nights to search for variable stars in the surroundings of the first long-run
target field (LRc1) of the COROT space mission. In this data set we identified
92 periodic variable stars, 86 of which are new discoveries and 6 of which are
known from the General Catalogue of Variable Stars (GCVS). For five of the GCVS
stars, variability could not be confirmed. Forty-three of the 92 detected
periodic variable stars are identified as eclipsing binaries. We have evaluated
the completeness of our survey for eclipsing binaries by comparing it to the
expected fraction of eclipsing binaries based on Hipparcos observations. From
this evaluation we show that the BEST data set presented here has a
completeness of 20%-30% for periods longer than 1 day and is complete relative
to Hipparcos for short-period binaries
- …