2,575 research outputs found

    Meron-Cluster Solution of Fermion and Other Sign Problems

    Get PDF
    Numerical simulations of numerous quantum systems suffer from the notorious sign problem. Important examples include QCD and other field theories at non-zero chemical potential, at non-zero vacuum angle, or with an odd number of flavors, as well as the Hubbard model for high-temperature superconductivity and quantum antiferromagnets in an external magnetic field. In all these cases standard simulation algorithms require an exponentially large statistics in large space-time volumes and are thus impossible to use in practice. Meron-cluster algorithms realize a general strategy to solve severe sign problems but must be constructed for each individual case. They lead to a complete solution of the sign problem in several of the above cases.Comment: 15 pages,LATTICE9

    Presence of Legionellaceae in warm water supplies and typing of strains by polymerase chain reaction

    Get PDF
    Outbreaks of Legionnaire's disease present a public health challenge especially because fatal outcomes still remain frequent. The aim of this study was to describe the abundance and epidemiology of Legionellaceae in the human-made environment. Water was sampled from hot-water taps in private and public buildings across the area of Göttingen, Germany, including distant suburbs. Following isolation, we used polymerase chain reaction in order to generate strain specific banding profiles of legionella isolates. In total, 70 buildings were examined. Of these 18 (26%) had the bacterium in at least one water sample. Legionella pneumophila serogroups 1, 4, 5 and 6 could be identified in the water samples. Most of the buildings were colonized solely by one distinct strain, as proven by PCR. In three cases equal patterns were found in separate buildings. There were two buildings in this study where isolates with different serogroups were found at the same time

    The confined-deconfined interface tension, wetting, and the spectrum of the transfer matrix

    Full text link
    The reduced tension σcd\sigma_{cd} of the interface between the confined and the deconfined phase of SU(3)SU(3) pure gauge theory is determined from numerical simulations of the first transfer matrix eigenvalues. At Tc=1/LtT_c = 1/L_t we find σcd=0.139(4)Tc2\sigma_{cd} = 0.139(4) T_c^2 for Lt=2L_t = 2. The interfaces show universal behavior because the deconfined-deconfined interfaces are completely wet by the confined phase. The critical exponents of complete wetting follow from the analytic interface solutions of a Z(3)\Z(3)-symmetric Φ4\Phi^4 model in three dimensions. We find numerical evidence that the confined-deconfined interface is rough.Comment: Talk presented at the International Conference on Lattice Field Theory, Lattice 92, to be published in the proceedings, 4 pages, 4 figures, figures 2,3,4 appended as postscript files, figure 1 not available as a postscript file but identical with figure 2 of Nucl. Phys. B372 (1992) 703, special style file espcrc2.sty required (available from hep-lat), BUTP-92/4

    Quantum Spin Formulation of the Principal Chiral Model

    Get PDF
    We formulate the two-dimensional principal chiral model as a quantum spin model, replacing the classical fields by quantum operators acting in a Hilbert space, and introducing an additional, Euclidean time dimension. Using coherent state path integral techniques, we show that in the limit in which a large representation is chosen for the operators, the low energy excitations of the model describe a principal chiral model in three dimensions. By dimensional reduction, the two-dimensional principal chiral model of classical fields is recovered.Comment: 3pages, LATTICE9

    A Multicanonical Algorithm and the Surface Free Energy in SU(3) Pure Gauge Theory

    Full text link
    We present a multicanonical algorithm for the SU(3) pure gauge theory at the deconfinement phase transition. We measure the tunneling times for lattices of size L^3x2 for L=8,10, and 12. In contrast to the canonical algorithm the tunneling time increases only moderately with L. Finally, we determine the interfacial free energy applying the multicanonical algorithm.Comment: 6 pages, HLRZ-92-3

    The Interface Tension in Quenched QCD at the Critical Temperature

    Full text link
    We present results for the confinement-deconfinement interface tension αcd\alpha_{cd} of quenched QCD. They were obtained by applying Binder's histogram method to lattices of size L2×Lz×LtL^2\times L_z\times L_t for Lt=2L_t=2 and L=8,10,12\mbox{ and }14 with Lz=30L_z=30 for L=8L=8 and Lz=3LL_z=3L otherwise. The use of a multicanonical algorithm and cylindrical geometries have turned out to be crucial for the numerical studies.Comment: (talk presented by B. Grossmann at Lattice 92), 4 pages with 5 figure appended as encapsulated postscript files at the end, preprint HLRZ-92-7

    Nonstationary dynamics of the Alessandro-Beatrice-Bertotti-Montorsi model

    Full text link
    We obtain an exact solution for the motion of a particle driven by a spring in a Brownian random-force landscape, the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. Many experiments on quasi-static driving of elastic interfaces (Barkhausen noise in magnets, earthquake statistics, shear dynamics of granular matter) exhibit the same universal behavior as this model. It also appears as a limit in the field theory of elastic manifolds. Here we discuss predictions of the ABBM model for monotonous, but otherwise arbitrary, time-dependent driving. Our main result is an explicit formula for the generating functional of particle velocities and positions. We apply this to derive the particle-velocity distribution following a quench in the driving velocity. We also obtain the joint avalanche size and duration distribution and the mean avalanche shape following a jump in the position of the confining spring. Such non-stationary driving is easy to realize in experiments, and provides a way to test the ABBM model beyond the stationary, quasi-static regime. We study extensions to two elastically coupled layers, and to an elastic interface of internal dimension d, in the Brownian force landscape. The effective action of the field theory is equal to the action, up to 1-loop corrections obtained exactly from a functional determinant. This provides a connection to renormalization-group methods.Comment: 18 pages, 3 figure
    • …
    corecore