13 research outputs found

    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices

    Full text link
    We discuss a model with ultra-cold atoms confined in optical superlattices. In particular, we study the ground-state properties of two spin-1 bosons trapped in a double-well potential. Depending on the external magnetic field and biquadratic interactions different phases of magnetic order are realized. Applying von Neumann entropy and number of relevant orbitals, we quantify the bipartite entanglement between particles. Changing the values of the parameters determining superlattices, we can switch the system between differently entangled states

    Witnesses of Quantum Chaos and Nonlinear Kerr-Like Oscillator Model

    Get PDF
    Here, we present a brief insight into some current methods allowing for the detection of quantum chaos phenomena. In particular, we show examples of proposals of the parameters which could be applied as indicators of quantum-chaotic behavior and already were presented in the literature. We concentrate here on the quantum fidelity and the fidelity-like functions, defined for the wave functions describing system’s evolution. The definition of the fidelity-like parameter also involves the operator of the mean number of photons/phonons. Discussing such parameter, we show here how it is possible to take into account in the discussion of quantum-chaotic systems simultaneously the behavior of the divergence of wave functions and the energy of the system represented by the mean number of photons/phonons. Next, we discuss entropy-type parameter which can also be a good candidate for the indicators of quantum chaos’ phenomena. We show the ability of all considered here parameters to be witnesses of quantum-chaotic behavior for the systems of the quantum nonlinear Kerr-like oscillator—the classical counterpart of such system can exhibit chaotic evolution in its canonical form

    Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses

    Full text link
    Analyses of phenomena exhibiting finite-time decay of quantum entanglement have recently attracted considerable attention. Such decay is often referred to as sudden vanishing (or sudden death) of entanglement, which can be followed by its sudden reappearance (or sudden rebirth). We analyze various finite-time decays (for dissipative systems) and analogous periodic vanishings (for unitary systems) of nonclassical correlations as described by violations of classical inequalities and the corresponding nonclassicality witnesses (or quantumness witnesses), which are not necessarily entanglement witnesses. We show that these sudden vanishings are universal phenomena and can be observed: (i) not only for two- or multi-mode but also for single-mode nonclassical fields, (ii) not solely for dissipative systems, and (iii) at evolution times which are usually different from those of sudden vanishings and reappearances of quantum entanglement.Comment: 10 pages, 3 figure

    Mixedness, Coherence and Entanglement in a Family of Three-Qubit States

    No full text
    We consider a family of states describing three-qubit systems. We derived formulas showing the relations between linear entropy and measures of coherence such as degree of coherence, first- and second-order correlation functions. We show that qubit–qubit states are strongly entangled when linear entropy reaches some range of values. For such states, we derived the conditions determining boundary values of linear entropy parametrized by measures of coherence

    Electromagnetically induced transparency for a double Fano-profile system

    Get PDF
    A Λ-like model of atomic levels involving two auto-ionizing states is considered. The levels are irradiated by two external electromagnetic fields, a strong driving and a weak probing ones. The analytical formula for medium susceptibility shows an additional electromagnetically induced transparency window caused by the second auto-ionizing level. Characteristics of both transparency windows are analyzed depending on parameters of auto-ionizing levels and the external driving field. Manipulation of these characteristics seems to be very effective because of their large sensitivity with respect to the parameters involved in the problem. This manipulation becomes even more feasible when considered model is implemented in so-called laser-induced continuum structure

    Sudden vanishing and reappearance of nonclassical effects, Phys. Rev. A 83

    No full text
    Analyses of phenomena exhibiting finite-time decay of quantum entanglement have recently attracted considerable attention. Such decay is often referred to as sudden vanishing (or sudden death) of entanglement, which can be followed by its sudden reappearance (or sudden rebirth). We analyze various finite-time decays (for dissipative systems) and analogous periodic vanishings (for unitary systems) of nonclassical correlations as described by violations of classical inequalities and the corresponding nonclassicality witnesses (or quantumness witnesses), which are not necessarily entanglement witnesses. We show that these sudden vanishings are universal phenomena and can be observed: (i) not only for two-or multimode but also for single-mode nonclassical fields, (ii) not solely for dissipative systems, and (iii) at evolution times which are usually different from those of sudden vanishings and reappearances of quantum entanglement

    Quantum Steering in Two- and Three-Mode ??-Symmetric Systems

    No full text
    We consider two PT-symmetric models, consisting of two or three single-mode cavities. In both models, the cavities are coupled to each other by linear interactions, forming a linear chain. Additionally, the first and last of such cavities interact with an environment. Since the models are PT-symmetric, they are described by non-Hermitian Hamiltonians that, for a specific range of system parameters, possess real eigenvalues. We show that in the models considered in the article, the steering generation process strongly depends on the coupling strengths and rates of the gains/losses in energy. Moreover, we find the values of parameters describing the system for which the steering appears
    corecore