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Abstract. A Λ-like model of atomic levels involving two auto-ionizing states is considered. The levels are
irradiated by two external electromagnetic fields, a strong driving and a weak probing ones. The ana-
lytical formula for medium susceptibility shows an additional electromagnetically induced transparency
window caused by the second auto-ionizing level. Characteristics of both transparency windows are ana-
lyzed depending on parameters of auto-ionizing levels and the external driving field. Manipulation of these
characteristics seems to be very effective because of their large sensitivity with respect to the parame-
ters involved in the problem. This manipulation becomes even more feasible when considered model is
implemented in so-called laser-induced continuum structure.

1 Introduction

According to the well-known Feynman rule of quantum
mechanics, various possible transmission paths from an
initial to a final state of a given system are possible and
add their probability amplitudes. This results in quan-
tum interference effects that lie in the heart of quan-
tum mechanics. However, interference phenomena are in-
teresting not only for basic physics, they can also be
conveniently exploited in the design of physical systems
with predefined properties. This quantum engineering has
been found useful, e.g., in nano-technologies or quantum-
information technologies. One of the most interesting ef-
fects arising from quantum interference is electromagnet-
ically induced transparency (EIT). In this phenomenon
widely discussed in numerous papers, a propagating beam
of electromagnetic radiation is effectively not affected by
the interaction with a medium though the medium under-
goes a certain complex quantum evolution. Considering
EIT, optical properties of the medium are modified by a
strong driving field such that the incident weak probe field
is not absorbed during its passage through the medium.
This was observed in various experimental configurations
including those of early experimental as well as theoreti-
cal considerations described in [1–7]. EIT effects have been
observed in three basic configurations containing three dis-
crete atomic levels, namely Λ-, V -type and ladder config-
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urations (for the ladder system [8] and Λ-model [9,10],
sometimes extended Lambda-models involving more than
two lower levels are referred to as “tripod” ones [11,12]).

Another kind of interference effects discussed in this
paper is related to auto-ionization (AI) processes in which
quantum interference paths including both discrete and
continuum levels play the crucial role. AI systems have
been considered in numerous papers starting from the
seminal paper by Fano [13]. Models involving discrete
levels located above a continuum threshold (AI levels)
have been considered in numerous works in atom-laser
physics [14–28] (and the references quoted therein). They
have been devoted to various aspects of AI systems. These
so-called Fano systems (and Fano-like systems) have also
been considered in other physical situations. They were
discussed, for instance in a context of nano-physics, meta-
materials [29], for the description of quantum dots (see,
e.g., in Refs. [30–32] and quite recently, noninteracting
waveguide arrays [33]. They were also a subject of vari-
uos review articles [34,35]). AI models have also been ap-
plied in the context of electromagnetic-wave propagation
in atomic media [36–38], for the description of interac-
tions in a group of two [39–44] or three [45] atomic sys-
tems. Even quantum entanglement phenomena have been
discussed in these systems [46].

As both the AI effects and EIT phenomena originate
in quantum interference, they have many properties in
common. In particular, there occurs similarity between
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the quantum interference effects considered in AI sys-
tems’ photoelectron spectra and the interference leading
to EIT. Already in the early models of electromagnetic
pulses propagating through a medium with the continuum
and AI states both types of the interference have been con-
sidered [36,37]. The model of a Λ-system with the upper
state replaced by a flat continuum has been discussed first
by van Enk et al. [47]. Later, it has been extended to the
model with an AI state [48]. Several aspects of this model
including AI resonances have been analyzed by Raczyński
et al. [49]. In this paper, we enrich the model by consider-
ing the second AI level with arbitrary energy. This gener-
alizes the model discussed in reference [50] that contains
two AI levels of the same energy. As it has been empha-
sized in references [51–53], the presence of an arbitrary
additional AI state results in new quantum interference
phenomena occurring in long-time photoelectron spectra
which are considered in a more realistic model, where the
external electromagnetic field has the white noise com-
ponent [54]. Among others, it can induce an additional
EIT window which parameters are controlled by the tran-
sition to (from) AI states. As is has been emphasized in
reference [55], in framework of a full quatized model of
the laser fields, the mechanism of autoionization is essen-
tially similar to that of so-called laser-induced continuum
structure (LICS), so LICS can be interpreted as a laser-
induced autoionizing-like resonance. The best experimen-
tal demonstration of LICS so far has be done by Halfmann
et al. [56,57] in the system of helium atoms, when LICS in
the flat photoionization of helium has been observed. Also
in the system of helium atoms, the population transfer via
a continuum has been demonstrated experimentally [58].
Then one can produce tunable resonances with adjustable
widths. For example, the control of Fano parameter by a
fourth discrete level in the framework of LICS in a tri-
pod system coupled via a continuum has been analyzed
in reference [59]. Therefore the phenomena discussed here
can be analyzed in the context of LICS with a wide pos-
sibility of their manipulation by changing the parameters
involved in the problem.

The paper is organized as follows. The model is de-
veloped in Section 2. Its physical behavior is discussed in
Section 3. Section 4 brings summary. The evaluation of
integrals needed for the model is contained in Appendix.

2 The model

The considered model extends the models discussed by
Raczyński et al. [49] and Bui Dinh et al. [50]. In refer-
ence [49] the Λ-like model with a single AI level and a
flat continuum coupled to two lower discrete states by an
external laser field has been discussed. Here, instead of a
single AI level, we consider two AI states |a1〉 and |a2〉
with energies E1 and E2, respectively. Moreover, these AI
states are embedded in a flat continuum |E〉. All these
states are coupled by two external fields: a weak probe
field of frequency ωp coupling a discrete level |b〉 to levels
|a1〉 and |a2〉 and a relatively strong driving control field
with frequency ωc interacting with another level |c〉 (for

Fig. 1. Scheme of the model. Configuration coupling Û1 (Û2)
between the AI level |a1〉 (|a2〉) and the flat continuum |E〉
gives the structured continuum |E) in the form of a double
Fano profile. The structured continuum |E) is coupled to the
level |b〉 (|c〉) by a weak probe (strong control) field of frequency
ωp (ωc).

the scheme of energy levels, see Fig. 1). Configurational
interaction between the AI levels |a1〉, |a2〉 and the flat
continuum |E〉 is characterized by operators Û1 and Û2, re-
spectively. Such configuration of atomic levels constitutes
a double-Λ system that behaves differently compared to
the usual Λ system. For instance, an additional Fano zero
in the long-time photoelectron spectrum [51–53] is found
in this enlarged system. These zeros are present even for
large values of asymmetry Fano parameters, which is un-
usual. We note that, in the usual Fano profiles, Fano zeros
move to minus infinity as the asymmetry parameter be-
comes large.

Coupling between atomic levels is mediated by exter-
nal laser fields. The state |b〉 is coupled both to the con-
tinuum |E〉 and AI levels |a1〉 and |a2〉 by a weak probe
field with amplitude εb. On the other hand, the state |c〉
communicates with the continuum |E〉 and AI levels |a1〉
and |a2〉 by a strong control field of amplitude εc. Obvi-
ously, non-resonant interactions with other levels lead to
energy level shifts. Therefore, the field frequencies (espe-
cially, the frequency of strong driving field ωc) should be
chosen such that these shifts are taken into account.

Using the method of Fano diagonalization [13] we can
replace all excited levels considered here by a structured
continuum |E). We note that this method was introduced
by Fano [13] and developed later, for instance, in refer-
ence [60]. After Fano diagonalization, the discrete levels
|b〉 and |c〉 are effectively coupled to a structured excited
continuum with certain density of states that forms a dou-
ble Fano profile. Its shape is determined by the following
ratios between the matrix elements of the transitions from
(to) a discrete level |j〉 to (from) the flat (or structured)
continuum, j = b, c [51]:

〈j|d̂|E)

〈j|d̂|E〉 =

(E−E1)(E−E2)+E(q1jγ1+q2jγ2)−(E1q2jγ2+E2q1jγ1)
(E − E1)(E − E2) − iE(γ1 + γ2) + i(E1γ2 + E2γ1)

.

(1)
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P+(ωb) = N

∫
〈b|d̂|E) ρEb dE = −Nεb

(
Rbb +

1
4
ε2
2RbcRcb

Eb + �ωb − Ec − �ωc − i�γcb − 1
4
ε2

cRcc

)
= ε0 εb χ(ω1) (4)

χ(ωb) = −N

ε0

(
Rbb +

1
4
ε2

cRbcRcb

Eb + �ωb − Ec − �ωc − i�γcb − 1
4
ε2

cRcc

)
(5)

Fi(E) =
(2E − E1 − E2)2 − E2

21 + 2Qi(2E − E1 − E2) + 2E21Q21i

(2E − E1 − E−A1)2 + (Γ + A2)2
, (8a)

Fj(E) =
(2E − E1 − E2)2 − E2

21 + 2Qj(2E − E1 − E2) + 2E21Q21j

(2E − E1 − E2 + A1)2 + (Γ − A2)2
(8b)

In this formula, the symbols γ1 = π|〈a1|U1|E〉|2 and
γ2 = π|〈a2|U2|E〉|2 denote auto-ionization widths related
to the presence of states |a1〉 and |a2〉, respectively. Sim-
ilarly as in [51], we have introduced the Fano asymmetry
parameters q1j and q2j in equation (1) for j = b, c:

q1j =
〈j|d̂|a1〉

π〈j|d̂|E〉〈E|Û |a1〉
, (2a)

q2j =
〈j|d̂|a2〉

π〈j|d̂|E〉〈E|Û |a2〉
. (2b)

A dipole-moment operator of electronic transitions is de-
noted as d̂. According to their definitions, the Fano asym-
metry parameters q1j and q2j give the ratios between the
strengths of transition between two discrete levels and
transition coming through the continuum state |E〉. If
direct ionization is negligible, values of the q-parameters
in (2) tend to infinity.

We assume that the energies of AI levels and the laser
field frequencies are considerably higher than the energy
threshold of the continuum. As a result, all threshold ef-
fects can be neglected and integrals over the energies can
be extended to minus infinity. Moreover, all matrix ele-
ments corresponding to the transitions to (from) the flat
continuum are assumed to depend only weekly on energy
E. On the other hand, the matrix elements describing
transitions to (from) the structured continuum with states
|E) (with a round brace]) depend strongly on energy pa-
rameter E.

The system described by its statistical operator ρ̂
evolves according to the Liouville-von Neumann equation
written in the rotating wave approximation (RWA) [61].
This approximation removes the terms oscillating fast in
time and thus giving a negligible contribution. Applying
the formalism of Fano diagonalization the following dif-
ferential equations for the matrix elements of statistical
operator ρEb = (E|ρ̂|b〉 and ρcb = 〈c|ρ̂|b〉 are obtained:

i �ρ̇Eb = (E − Eb − �ωb) ρEb

− 1
2
εb

(
E|d̂|b

〉
− 1

2
εc

(
E|d̂|b

〉
ρcb, (3a)

i �ρ̇cb = (E + �ωc − Eb − �ωb − i�γcb) ρcb

− 1
2
ε∗c

∫
〈c|d̂|E)ρEbdE. (3b)

Similarly as in reference [49], we have introduced a phe-
nomenological relaxation rate γcb for the coherence ρcb.
We note that the derived equations are obtained in the
first-order perturbation approximation in the probe-field
amplitude εb.

Although the solution of differential equations (3) can
be found for an arbitrary time t, we pay attention to only
its long-time behavior. That is why, we derive the steady-
state solution along the same vein as in reference [49]. We
first express ρcb in terms of ρEb to get an integral equation
that is solved subsequently.

We need to reveal the component of polarization of the
irradiated medium to study EIT. The positive-frequency
component of polarization P+ can be expressed as a func-
tion of the matrix element ρEb,

see equation (4) above.

In equation (4), N denotes the number of atoms and ε0
stands for the vacuum permittivity. According to equa-
tion (4) the medium susceptibility χ attains the form [49]

see equation (5) above.

The parameters Rij occurring in equations (4) and (5) are
given as:

Rij(ωb)= lim
η→0+

∫ 〈i|d̂|E)(E|d̂|j〉
Eb − E + �ωb + iη

dE, i, j = b, c. (6)

The limit η → 0+ assumed in equation (6) assures non-
negativity of the imaginary part of susceptibility χ. It
should be noted that the function to be integrated con-
tains the matrix elements giving transitions to (from) the
structured continuum |E). Since these elements depend on
energy, we have to apply the explicit expression (1) to ob-
tain the energy dependence of the integrand. This results
in the formula

Rij(ωb)= lim
η→0+

DiD
∗
j

∫
Fi(E)Fj(E)

Eb−E+�ωb+iη
dE, i, j = b, c,

(7)
where

see equation (8) above
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Rij(ω) = −2iπDiD
∗
j

⎧⎨
⎩

[(
ω − E21

2

)2 − E2
21
4

] [
Γ
(
ω − E21

2

)
(Qi + Qj)

]
+ Γ 2

(
ω − E21

2

)2
(QiQj − 1)[(

ω − E21
2

)2
+
(

Γ+A2
2

)2] [(
ω − E21

2

)2
+
(

Γ−A2
2

)2]

+
1

2
+

Ep

(
E2

p − E2
21
4

)
(Qi + Qj) + ΓE2

p(QiQj − 1)

−i
(Ep − ω + E21

2

)
(Γ + A2)A2

+
Em

(
E2

m − E2
21
4

)
(Qi + Qj) + ΓE2

m(QiQj − 1)

i
(Em − ω + E21

2

)
(Γ − A2)A2

⎫⎬
⎭ (12)

Rij(ω) = −2iπDiD
∗
j

⎧⎨
⎩

[(
ω − E21

2

)2 − E2
21
4

] [
Γ
(
ω − E21

2

)
(Qi + Qj)

]
+ Γ 2

(
ω − E21

2

)2
(QiQj − 1)[(

ω − E21
2

− A1
2

)2
+ Γ2

4

] [(
ω − E21

2
+ A1

2

)2
+ Γ2

4

]

+
1

2
+

Cp

(
C2

p − E2
21
4

)
(Qi + Qj) + ΓC2

p(QiQj − 1)

i
(Cp − ω + E21

2

) [(Cp + A1
2

)2
+ Γ2

4

] +
Cm

(
C2

m − E2
21
4

)
(Qi + Qj) + ΓC2

m(QiQj − 1)

i
(Cm − ω + E21

2

) [(Cm − A1
2

)2
+ Γ2

4

]
⎫⎬
⎭ (14)

and

A1 =
1√
2

{[(
4E2

21 − Γ 2
)2

+ 16E2
21 (γ2 − γ1)2

] 1
2

+ 4E2
21 − Γ 2

} 1
2

, (9a)

A2 =
1√
2

{[(
4E2

21 − Γ 2
)2

+ 16E2
21 (γ2 − γ1)2

] 1
2

− 4E2
21 + Γ 2

} 1
2

. (9b)

In equations (8) and (9) we have introduced energy sep-
aration E21 = E2 − E1 between two AI levels, effective
asymmetry parameters Qk and AI width Γ defined as:

Qk =
q1kγ1 + q2kγ2

Γ
, k = b, c, (10a)

Γ = γ1 + γ2. (10b)

Also the quantities Q21k,

Q21k =
q2kγ2 − q1kγ1

Γ
, k = b, c, (11)

have been found useful in writing equations (8). Moreover,
we denote the matrix elements of dipole-moment transi-
tions 〈i|d̂|E〉 by Di.

As the threshold effects are neglected we can extend
the integration limits for Rij(ωb) from minus to plus in-
finity and find an analytical solution both for Rij(ωb) and
the medium susceptibility χ(ωb). The obtained formulas
are complex and can be found in Appendix together with
details of their derivation.

3 Results

The analytical solution for Rij(ωb) takes a simple form for
special cases. If we assume identical parameters of two AI

levels (γ1 = γ2, q1j = q2j for j = b, c) and their energy
levels close to each other (E21 < Γ ), we have A1 = 0
and A2 =

√
Γ 2 − E2

21. The solution for Rij can then be
expressed as:

see equation (12) above.

In equation (12) we have redefined parameter ω, ω =
�ωb + Eb − E1 and introduced the following energy-like
parameters:

Ep
m

=
Γ ± A2

2
. (13)

If we additionally assume energy degenerate AI levels
(E1 = E2, then A1 = 0, A2 = Γ , Ep = iΓ and Em = 0)
and the solution (12) reduces to that derived by Raczyński
et al. [49]. In this case, we deal with only one effective AI
level described by effective parameters Qi and Γ (for de-
tails, see [50]).

If the difference of energies of two AI levels is suf-
ficiently large (E21 > Γ = γ1 + γ2), we have A1 =√

E2
21 − Γ 2 and A2 = 0. Then the solution for Rij can

be expressed as:

see equation (14) above,

using the parameters

Cp
m

=
±A1 + iΓ

2
. (15)

As we want to compare the obtained results with those
found in reference [49] we assume the same values of pa-
rameters of the investigated system, i.e. γ = 10−9 a.u.,
atomic population N = 0.33 × 1012 cm−3, Db = 2 a.u.,
Dc = 3 a.u. Values of asymmetry parameters vary in the
interval 〈10, 100〉 and field amplitude εc increases from
10−9 to 10−6 a.u.

Assuming identical parameters describing AI levels
(γ1 = γ2 and q1j = q2j for j = b, c), Qb = Qc = 10,
Γ = 10−9 a.u., and εc = 4 × 10−7 a.u., we analyze the
spectral dependence of medium susceptibility χ in Fig-
ure 2. There occurs one zero in the dependence of Im{χ}
considering the energy degenerate case (E21 = 0) in ac-
cord with the results in references [49,50]. If the param-
eters of two AI levels differ, an additional zero appears
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Fig. 2. Real (a) and imaginary (b) part of medium suscepti-
bility χ depending on relative detuning ω/Γ ; ω = ωb + (Eb −
E1)/�; εc = 4 × 10−7 a.u., Γ = 10−9 a.u. and Qb = Qc = 10.
Solid lines correspond to the degenerate case (E21 = 0),
whereas dashed lines are appropriate to E21 = 0.8Γ .

in the dependence of Im{χ} indicating the occurrence of
the second absorption window. Two absorption windows
exist whenever either Q21k parameters or energy levels of
two AI levels differ. Also the second absorption window
is characterized by normal dispersion (see Fig. 2b) resem-
bling the behavior of long-time auto-ionization spectra for
a system with two AI levels discussed in reference [51].
Also here, the consideration of the second AI state differ-
ing from the first one results in an additional Fano zero
in these spectra. This similarity is not surprising as both
effects originate in quantum interference between two ion-
ization paths via the AI levels.

The strength of the driving field linearly proportional
to Qc influences the width of the EIT windows. The
greater the strength, the wider the windows, as docu-
mented in Figure 3. To show how the strength of driving
field (and hence, the value of Qc) influences the widths
of transparency windows, we present there the plots of
both EIT windows’ widths as a function of the asymme-
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Fig. 3. Widths of two EIT windows as functions of the asym-
metry parameter Qc. All values are normalized to that for
the first EIT window corresponding to the case Qb = 10,
E21 = 0.8Γ , Γ = 10−9 a.u., εc = 4 × 10−7 a.u. and the re-
maining parameters are the same as those in the caption to
Figure 2.

try parameter Qc, for the spectrally non-degenerate case
(E21 = 0.8Γ ). They are normalized to the width of the
first transmission window for Qb = Qc = 10. We can see
from Figure 3 that the width of the second window is equal
to ∼4.8 and remains almost unchanged for the values of
Qc within the range from 1 to ∼17. Then, it increases
slowly and reaches the value ∼6.5 for Qc = 40. For the
case of the first window, we observe more distinct changes
of its width. For small values of Qc (Qc ∼ 1) the window
is very narrow, its width is very close to zero. With in-
creasing values of the asymmetry parameter Qc the width
grows and reaches ∼9.3 for Qc = 40. It is worth noting
that this growth is almost linear for Qc � 15. Indeed, this
window is considerably more influenced by the presence of
additional quantum interferences than the second one due
to the fact that the field is tuned exactly to the position
of the lower AI level. Those facts suggest the strength of
the driving field as a suitable parameter for tuning EIT
effects.

If we change the separation of energies E21 of two AI
levels, the position of additional window changes accord-
ing to the energy of the second AI level. We can see in
Figure 4 that the larger the separation of energies, the
more distant the second EIT window from the first one.
Moreover, whereas the spectral width of the first win-
dow remains practically unchanged with the increasing
values of E21, the spectral width of the second window
increases. The second EIT window even becomes broader
than the first EIT window for sufficiently large values of
the energy difference E21. As Figure 5 documents, this
width increases from zero to ∼4.2 as the distance between
AI levels E21/Γ changes from 0 (degenerate case) to 1.5.
Moreover, if the level separation E21 equals ∼0.625, the
both widths become the same.
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Fig. 6. Real (a) and imaginary (b) part of medium suscepti-
bility χ depending on relative detuning ω/Γ . We assume AI
energy levels separation E21 = 1.2Γ and various values of Qb.
Moreover, εc = 4×10−7 a.u., Γ = 10−9 a.u. Values of the other
parameters are the same as those in the caption to Figure 2.

Also the effective asymmetry parameter Qb, linearly
proportional to the probe field modifies the medium sus-
ceptibility χ. As shown in Figure 6, greater values of Qb

make EIT windows visible in the spectral dependence of
Im{χ} narrower. However, they keep the spectral posi-
tions of EIT windows unchanged. They also considerably
increase variations in the dependence of Re{χ}, thus en-
hancing dispersion properties of the medium.

Parameters of the system thus allow for detailed tun-
ing of EIT windows both in spectral position and width.
The second EIT window opened by the second AI level
is even more sensitive to the change of parameters and
allows for wider windows. This is important in the pulsed
propagation regime in which these spectral widths limit
possible pulse durations from the point of view of EIT.

4 Summary

An analytical formula for medium susceptibility χ has
been derived in the Λ-like system involving two general

http://www.epj.org


Eur. Phys. J. D (2014) 68: 150 Page 7 of 9

AI levels. A second transparency window originating in
the presence of the second AI level has been revealed.
Its position and width depend on the values of param-
eters describing the interaction of levels with the driv-
ing field. Also the window’s depth can be manipulated by
changing the probe field. The appearance of the second
transparency window occurs due to the quantum interfer-
ence that dramatically modifies optical properties of the
medium. Both discrete and continuum paths interfere to-
gether to form a complex response of the medium with
two typical transparency windows. Especially the contin-
uum paths have been found important for the observed
effects. This has allowed to reveal an analogy between
the observed effects and the phenomena occurring in the
auto-ionization photoelectron spectra. The obtained re-
sults can be applied for tailoring the characteristics of
electromagnetically-induced transparency in such media.
Therefore, the multiple Fano resonance can be useful for
slowing down of spectrally-broad light pulses. It is well-
known that in framework of a full quantized model of the
laser fields, the mechanism of autoionization is essentially
the same to that of LICS, where LICS can be interpreted
as a laser-induced autoionizing-like resonance. Therefore,
the phenomena discussed here can be analyzed in the con-
text of LICS with a wide possibility of their manipulation
by changing the parameters involved in the problem.

J.P.Jr. acknowledges the support by Operational Program Re-
search and Development for Innovations-European Regional
Development Fund project CZ.1.05/2.1.00/03.0058 of MŠMT
ČR.

Appendix

In Appendix, we derive an analytical formula for param-
eter Rij given in equation (7) and needed for the deter-
mination of susceptibility χ by the residual method. In
this method, we find the poles of the integrand in equa-
tion (8) inside the contour giving a physical solution (see,
e.g., [15,51]).

We first discuss the case with A2 �= Γ for which three
poles are relevant,

Ek0 = Eb + �ωb + iη,

Ek1 =
E1 + E2

2
+

A1

2
+ i

Γ + A2

2
, (A.1)

Ek2 =
E1 + E2

2
− A1

2
+ i

Γ − A2

2
for A2 < Γ,

Ek2 =
E1 + E2

2
− A1

2
− i

Γ − A2

2
for A2 > Γ. (A.2)

Using these poles, the solution for Rij attains the form

Rij(ω) = −iπDiD
∗
j (2[Kij0(ω) + Kij1(ω)

+ Kij2(ω) + Kij3(ω)] + 1), i, j = b, c. (A.3)

We note that Kij2 = 0 for A2 > Γ and Kij3 = 0 for
A2 < Γ . Otherwise, the parameters Kijn, n = 0, 1, 2, 3,

can be expressed as:

Kij0(ω) =

{[(
ω − E21

2
− A1

2

)2

+
(

Γ + A2

2

)2
]

×
[(

ω − E21

2
+

A1

2

)2

+
(

Γ − A2

2

)2
]}−1

×
{[(

ω − E21

2

)2

− E2
21

4

][
Γ

(
ω − E21

2

)

× (Qb + Qc) +
ΓE21

2
(Qi21 + Qj21)

]

+ Γ 2

[(
ω − E21

2

)
Qi +

E21

2
Qi21

]

×
[(

ω − E21

2

)
Qj +

E21

2
Qj21

]

−
[(

ω − E21

2

)
Γ +

E21

2
(γ2 − γ1)

]2}
, (A.4)

Kij1(ω) =

{
i

(
E01 − ω +

E21

2

)
(Γ + A2)

×
[(

E01 +
A1

2

)2

+
(

Γ − A2

2

)2
]}−1

×
{

Γ

(
E2

01 −
E2

21

4

)

×
[
E01 (Qi + Qj) +

E21

2
(Qi21 + Qj21)

]

+ Γ 2

[
E01Qi +

E21

2
Qi21

][
E01Qj +

E21

2
Qj21

]

−
[
E01Γ +

E21

2
(γ2 − γ1)

]2}
, (A.5)

Kij2(ω) =

{
i

(
E02 − ω +

E21

2

)
(Γ − A2)

×
[(

E02 − A1

2

)2

+
(

Γ + A2

2

)2
]}−1

×
{

Γ

(
E2

02 −
E2

21

4

)

×
[
E02 (Qi + Qj) +

E21

2
(Qi21 + Qj21)

]

+ Γ 2

[
E02Qi +

E21

2
Qi21

][
E02Qj +

E21

2
Qj21

]

−
[
E02Γ +

E21

2
(γ2 − γ1)

]2}
(A.6)
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Kij2(ω) =

{(
−ω +

E21

2
+ E02

)2
[(

E02 − A1

2

)2

+ Γ 2

]2}−1{[
2ΓE02

[
E02(Qi + Qj) +

E21

2
(Qi21 + Qj21)

]

+ Γ (Qi + Qj)

(
E2

02 − E2
21

4

)
+ Γ 2Qi

(
E02Qj +

E21

2
Qj21

)
+ Γ 2Qj

(
E02Qi +

E21

2
Qi21

)

− 2

[
E02Γ +

E21

2
(γ2 − γ1)

]
Γ

](
−ω +

E21

2
+ E02

)[(
E02 − A1

2

)2

+ Γ 2

]
−
[(

E02 − A1

2

)2

+ 1 + 2

(
E02 − A1

2

)

×
(
−ω +

E21

2
+ E02

)][(
E2

02 − E2
21

4

)
Γ 2

[
E02 (Qi + Qj) +

E21

2
(Qi21 + Qj21)

]

+ Γ 2

[
E02Qi +

E21

2
Qi21

] [
E02Qj +

E21

2
Qj21

]
−
[
E02Γ +

E21

2
(γ2 − γ1)

] ]}
(A.11)

and

Kij3(ω) =

{
− i

(
E03 − ω +

E21

2

)
(Γ − A2)

×
[(

E03 − A1

2

)2

+
(

Γ + A2

2

)2
]}−1

×
{

Γ

(
E2

03 −
E2

21

4

)

×
[
E03 (Qi + Qj) +

E21

2
(Qi21 + Qj21)

]

+ Γ 2

[
E03Qi +

E21

2
Qi21

] [
E03Qj +

E21

2
Qj21

]

−
[
E03Γ +

E21

2
(γ2 − γ1)

]2}
. (A.7)

In writing equations (A.4)–(A.7), we have redefined ω,
ω = �ωb +Eb−E1, and introduced energy-like parameters
E01 = [A1 + i(Γ +A2)]/2, E02 = −[A1 + i(Γ −A2)]/2 and
E03 = −[A1 − i(Γ − A2)]/2.

Provided that A2 = Γ , we also consider three poles,

Ek0 = Eb + �ωb + iη,

Ek1 =
E1 + E2

2
+

A1

2
+ iΓ, (A.8)

Ek2 =
E1 + E2

2
− A1

2
. (A.9)

Whereas the first two poles are simple, the third one is of
the second order. Taking this into account, we arrive at
the formula for Rij ,

Rij(ω) = −iπDiD
∗
j (2[Kij0(ω) + Kij1(ω) + Kij2(ω)] + 1).

(A.10)
In equation (A.10), the parameters Kij0 and Kij1 are
given in equations (A.4) and (A.5) assuming A2 = Γ .
The remaining parameter Kij2 is defined as

see equation (A.11) above;
E02 = −A1/2 in this case.
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Artoni, G.C.L. Rocca, J. Mod. Opt. 56, 2348 (2009)
8. K. Kowalski, V. Cao Long, H. Nguyen Viet, S. Gateva, M.
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15. K. Rza̧żewski, J.H. Eberly, Phys. Rev. Lett. 47, 408 (1981)
16. G.S. Agarwal, S.L. Haan, J. Cooper, Phys. Rev. A 28,

1154 (1983)
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