28 research outputs found

    Effects of Saponins against Clinical E. coli Strains and Eukaryotic Cell Line

    Get PDF
    Saponins are detergent-like substances showing antibacterial as well as anticancer potential. In this study, the effects of saponins from Quillaja saponaria were analyzed against prokaryotic and eukaryotic cells. Multidrug-resistant clinical E. coli strains were isolated from human urine. As eukaryotic cells, the CHO-K1 cell lines were applied. Antibacterial effect of ampicillin, streptomycin, and ciprofloxacin in the presence of saponins was measured by cultivation methods. Properties of saponins against CHO-K1 cells were measured by the MTT test, hemolysis assay and flow cytometry. Saponin from Quillaja saponaria has a cytotoxic effect at concentrations higher than 25 μg/mL and in the range of 12–50 μg/mL significantly increases the level of early apoptotic cells. Saponin at dose of 12 μg/mL enhances the six E. coli strains growth. We postulate that saponins increase the influx of nutrients from the medium into E. coli cells. Saponins do not have synergetic effects on antibacterial action of tested antibiotics. In contrary, in the presence of saponins and antibiotics, more CFU/mL E. coli cells were observed. This effect was similar to saponins action alone towards E. coli cells. In conclusion, saponins was cytotoxic against CHO-K1 cells, whereas against E. coli cells this effect was not observed

    Towards a better understanding of the bacterial pan-genome

    Get PDF
    The bacterial pan-genome is a relatively new concept that refers to the number of genes observed in a given set of bacterial genome sequences, either at the intra- or inter-species level. Determining the pan-genome of a given species of bacteria using a large number of strains allows one to compare multiple genes and to determine evolutionary links between isolates. This information can help to determine population structure, diversity in terms of prevalence in a given environment and pathogenicity of microorganisms. Within this review, we explain the most important issues related to pan-genome studies. We also include a brief description of some selected bacterial pan-genomes. Finally, we propose an easy-toperform workflow to study bacterial pan-genomes that will facilitate nonexperts in a pan-genome-based investigation

    Characterization of Microbial Communities in Acidified, Sulfur Containing Soils

    Get PDF
    Over a period of three years, microbial communities in acidified soil with high sulfur content were analyzed. In soil water extracts ureolytic, proteolytic, oxidoreductive, and lipolytic activity were detected. The presented results indicate that the enzymatic activity of soil micro­bial communities varied considerably over time. Isolated 26 (80%) bacterial strains belonged to genus Bacillus sp. and were identified bycultivation and 16S rRNA methods. The commercially available procedures for bacterial DNA isolation from acidified soil failed, therefore a new, specific DNA isolation method was established. Ureolytic activity, detected in soil extracts as well as in isolated Bacillus sp. strains may be considered as a tool for the bioremediation of acidified soils with high sulfate content

    Characterization of <i>Steinernema feltiae</i> (Rhabditida: Steinernematidae) Isolates in Terms of Efficacy against Cereal Ground Beetle <i>Zabrus tenebrioides</i> (Coleoptera: Carabidae): Morphometry and Principal Component Analysis

    No full text
    One of the most dangerous pests of cereals is Zabrus tenebrioides and, in Poland, it is becoming a serious pest. Entomopathogenic nematodes (EPNs) seem to be a very promising, biological control agent for this pest. Native EPN populations are well adapted to local environmental conditions. The current study characterized three Polish isolates of the EPN Steinernema feltiae, which differed in their effectiveness against Z. tenebrioides. In the field, isolate iso1Lon reduced the pest population by 37%, compared with 30% by isolate iso1Dan and 0% by the iso1Obl isolate; the number of plants damaged by Z. tenebrioides in the presence of the different isolates reflected the results in terms of the decrease in pest population size. After incubation in the soil for 60 days, recovered EPN juveniles of all three isolates were able to infect 93–100% of the test insects, with isolate iso1Obl again showing the lowest effectiveness. The juveniles of isolate iso1Obl were also morphometrically distinct from the other two isolates, as revealed by principal component analysis (PCA), which helped to distinguish the EPN isolates. These findings showed the value of using locally adapted isolates of EPNs; two of the three isolates randomly selected from Polish soil outperformed a commercial population of S. feltiae

    Tandem Tetramer-Based Microsatellite Fingerprinting for Typing of Proteus mirabilis Strains

    No full text
    Two microsatellite tandem repeated tetramers, (GACA)(4) and (CAAT)(4), were used for Proteus mirabilis strain differentiation. The microsatellite-based PCR tests were applied for the examination of interstrain diversity for 87 P. mirabilis strains. Forty-six of the investigated strains were clinical isolates (5 were hospital isolates and 39 were outpatient clinic isolates); 42 strains were derived from the Kauffmann-Perch collection of laboratory strains. Fingerprinting done with the tetramers had a high discrimination ability [0.992 and 0.940 for (GACA)(4) and (CAAT)(4), respectively]. The distributions of clinical isolates among well-defined laboratory strains, determined by numerical analysis (unweighted pair-group method with arithmetic averages; Dice similarity coefficient), proved their genetic similarity to reference strains in the Kauffmann-Perch collection. This analysis also indicated that it is possible to estimate some phenotypic properties of P. mirabilis clinical isolates solely on the basis of microsatellite fingerprinting

    Synthetic peptides mimicking antigenic epitope of Helicobacter pylori urease

    No full text
    Short peptides resembling the Helicobacter pylori urease antigen (UreB F8 Ser-Ile-Lys-Glu-Asp-Val-Gln-Phe) with deleted aspartic acid and glutamic acid residues, anchored through a triazine linker via the N-terminal moiety to cellulose plate were prepared. The peptides were used for binding of antibodies from sera of patients with medically confirmed atherosclerosis. Recognition of the peptides was also tested with anti-Jack beans urease antibodies. The important role of a Gly-Gly spacer separating the peptides from the cellulose support was shown. Different patterns of binding of antibodies from H. pylori infected patients and anti-Jack bean urease antibodies were observed only in the case of pentapeptides. The peptide Gly-Gly-Leu-Val-Phe-Lys-Thr was recognized by most of the tested sera
    corecore