14 research outputs found
INFLUENCE OF HOMOGENIZATION METHODS IN PREDICTION OF STRENGTH PROPERTIES FOR WPC COMPOSITES
In order to reduce costs of experimental research, new methods of fore-casting material properties are being developed. The current intensive increase in computing power motivates to develop the computer simula-tions for material properties prediction. This is due to the possibility of using analytical and numerical methods of homogenization. In this work calculations for predicting the properties of WPC composites using ana-lytical homogenization methods, i.e. Mori-Tanaka (first and second order) models, Nemat-Nasser and Hori models and numerical homogenization methods were performed
THE POSSIBILITY OF USING WOOD FIBER MATS IN PRODUCTS MANUFACTURING MADE OF POLYMER COMPOSITES BASED ON NUMERICAL SIMULATIONS
In this work the calculations for predicting the properties of wood fiber mats – polyester resin composite using numerical homogenization method were performed. For this purpose, the microstructural strength properties were calculated using DIGIMAT FE commercial code. In addition, for com-parative purposes a calculation of polyester resin – glass fiber composites was conducted. This allowed to compare the properties of two types of com-positions. In addition, the obtained strength properties were used to simulate the work of product made of these composites. This study was performed using the Ansys commercial code. Usability of the polyester resin – wood fiber mat composite and knowledge of its properties will allow to find a correct application of this composite type and can provide an alternative way to other polymeric resin reinforced by mat
The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mechanical Properties and Quality of Molded Pieces
This work is inspired by the current European policies that aim to reduce plastic waste. This is especially true of the packaging industry. The biocomposites developed in the work belong to the group of environmentally friendly plastics that can reduce the increasing costs of environmental fees in the future. Three types of short fibers (flax, hemp and wood) with a length of 1 mm each were selected as fillers (30% mass content in PHBV). The biocomposites were extruded and then processed by the injection molding process with the same technical parameters. The samples obtained in this way were tested for mechanical properties and quality of the molded pieces. A significant improvement of some mechanical properties of biocomposites containing hemp and flax fibers and quality of molded pieces was obtained in comparison with pure PHBV. Only in the case of wood–PHBV biocomposites was no significant improvement of properties obtained compared to biocomposites with other fillers used in this research. The use of natural fibers, in particular hemp fibers as a filler in the PHBV matrix, in most cases has a positive effect on improving the mechanical properties and quality of molded pieces. In addition, it should be remembered that the obtained biocomposites are of natural origin and are fully biodegradable, which are interesting and desirable properties that are a part of the current trend regarding the production and commercialization of modern biomaterials
Evaluation of the influence of micromechanical model selection on forecasting WPC composite fiber orientation and mechanical properties
W pracy oceniono efektywność zastosowania modeli mikromechanicznych Folgara-Tuckera oraz RSC w prognozowaniu powtryskowej orientacji włókien w matrycy polimerowej dla specyficznego kompozytu WPC złożonego z matrycy polimerowej PP oraz napełniacza, tj. włókien drzewnych w ilości 15% mas. Obliczone wartości składowych tensora orientacji włókien w matrycy polimerowej pozwoliły również na ocenę wpływu zastosowanych modeli mikromechanicznych na możliwości prognozowania właściwości mechanicznych kompozytu WPC z zastosowaniem modelu homogenizacji Mori-Tanaka. Należy zauważyć, że domyślnym modelem mikromechanicznym stosowanym w wielu programach CAE specjalizowanych w zakresie procesu formowania wtryskowego jest model Folgara-Tuckera. Istotna staje się więc ocena przydatności modelu RSC, który nie jest modelem domyślnym i próba odpowiedzi, czy można go stosować w prognozowaniu właściwości przetwórczych i mechanicznych kompozytów WPC.This article evaluates the effectiveness of selected micromechanical models, such as Folgar-Tucker and RSC, in numerical calculations concerning fiber orientation prediction in a polymer matrix for the WPC composite containing 15% by mass of wood fibers. In addition, the obtained values of fiber orientation tensor in the polymer matrix allowed to assess the influence of the applied micromechanical models on the possibilities of predicting the mechanical properties of the WPC composite using the Mori-Tanaka homogenization model. It should be noted that the default micromechanical model suggested in CAE software including the injection moulding process modules is the Folgar-Tucker model. Hence, it is important to investigate whether the second optional model, i.e. RSC, should be the main model used in predicting the processing and mechanical properties of WPC composites
The Mechanical Properties Prediction of Poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV) Biocomposites on a Chosen Example
This paper aims to experimentally determine the properties of the poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)]—(PHBV)—30% hemp fiber biocomposite, which is important in terms of numerical simulations of product manufacturing, and to evaluate the mechanical properties by means of micromechanical modeling. The biocomposite was manufactured using a single-screw extruder. Specimens for testing were produced by applying the injection molding technology. Utilizing the simulation results of the plastic flow, carried out by the Moldflow Insight 2016 commercial software and the results of experimental tests, the forecasts of selected composite mechanical properties were performed by means of both numerical and analytical homogenization methods. For this purpose, the Digimat software was applied. The necessary experimental data to perform the calculations for the polymer matrix, fibers, and the biocomposite were obtained by rheological and thermal studies as well as elementary mechanical tests. In the paper, the method of determining selected properties of the biocomposite and the method of forecasting its other properties are discussed. It shows the dependence of the predicted, selected properties of the biocomposite on the filler geometry assumed in the calculations and the homogenization method adopted for the calculations. The results of the work allow for the prediction of properties of the PHBV biocomposites—hemp fiber for any amount of filler used. Moreover, the results allow for the estimation of the usefulness of homogenization methods for the prediction of properties of the PHBV-hemp fiber biocomposites. Furthermore, it was found that for the developed and tested biocomposites, the most effective possibility of mechanical properties prediction is using the Mori-Tanaka homogenization model, which unfortunately has some limitations
Analysis of Fiber Orientation in the Wood-Polymer Composites (WPC) on Selected Examples
The fibers orientation in the polymer matrix is an important factor determining mechanical properties of products made of composites by means of an injection molding process. The fibers arrangement has an effect on shrinkage of the composite and the dimensional accuracy of molded piece. The knowledge of fiber orientation can determine the proper dimensions and design of the molding cavities and then correct some of physical and mechanical properties of the molded piece. The orientation of fillers depends on many factors, among which the important role play processing parameters including the injection speed. The aim of this study was to assess the orientation of the fibers in wood-polymer composite on the selected examples. The knowledge and proper use of micromechanical models allow to evaluate the fibers flow and their orientation in polymer matrix. The research was performed both for numerical simulations and experimental studies for results verification
Influence of the Alkali Treatment of Flax and Hemp Fibers on the Properties of PHBV Based Biocomposites
This study assessed the impact of alkali treatment of hemp and flax fibers on mechanical properties (determined by means of the uniaxial tensile test, impact tensile strength test and hardness test), processing properties (the course of the extrusion and injection process) and usable properties (shrinkage of molded pieces, degree of water absorption) of biocomposites on the base of poly (3-hydroxybutyric-co-3-hydroxyvaleric acid) (PHBV) biopolymer. For this purpose, 1 mm of length flax and hemp fibers was surface-modified by means of aqueous solution of NaOH (sodium hydroxide) with concentrations of 2%, 5% and 10%. The composites were made using the extrusion technology. The test specimens were produced by injection molding technology. In total, eight types of biocomposites with modified and non-modified fibers were produced, and each biocomposite contained the same filler content (15 wt.%). Their properties were compared in some cases with pure PHBV polymer. In the case of biocomposites filled with hemp fibers, it was noted that an increase of the alkalizing solution concentration improved most of the tested properties of the obtained biocomposites. On the other hand, in the case of flax fibers, there was a significant decrease in most of the mechanical properties tested for the composite containing fibers etched by 10% NaOH solution. The obtained results were verified by examining fibers and the destroyed specimens with a scanning electron microscope (SEM) and an optical microscope, which confirmed, especially, the significant geometry changes of the flax fibers etched by 10% NaOH solution. This procedure also resulted in a significant change of processing properties—a composite of this fiber type required about 20 °C lower temperature during the extrusion and injection molding process in order to obtain the right product. These results lead to the important conclusion that for each filler of the plant-origin and polymer matrix, the fiber alkalization method should be selected individually in order to improve the specific properties of biocomposites
The Optimization of PHBV-hemp Fiber Biocomposite Manufacturing Process on the Selected Example
In this work, a modern biocomposite on the base of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix commonly known as PHBV was produced in the extrusion process, containing 30% by weight of hemp fibers. The use of the above-mentioned filler allowed to reduce the producing costs of the composite material compared to pure PHBV, improving, among others, some mechanical properties of products made of this biocomposite while maintaining full biodegradation. The obtained biocomposite can be successfully used for the production of injection molded products, but its processing properties are not yet fully known and consequently it is difficult to obtain the optimal performance properties of the products. As part of this study, the process of optimization of the production process of products from the PHBV-hemp fiber biocomposite was carried out on the example of samples intended for testing in the uniaxial tensile test. By using orthogonal planes, widely used in optimization process, the required number of injection molding tests was reduced. Input data values were determined by the factorial planning method that is commonly used in designing experiments. The calculations were carried out in the Minitab 18 software. Six controlling factors were used in the analyzes, each of which was subject to changes on three levels. When selecting the range of controlling factors, it was initially assumed that for all assumed levels of variability it must be possible to fill the mold cavity completely. The orthogonal plan of the L27 type was used in the research. For the purposes of the method, an orthogonal table was built containing 27 combinations of parameters subject to optimization. Optimization was undertaken for two main criteria: shrinkage of the ,,dog-bone” samples (primary and secondary volumetric shrinkage), mechanical properties (Young's modulus, tensile strength, elongation at break). By means of Taguchi method, a significant improvement of some product mechanical properties made of biocomposite was noted and the effective reduction of the processing shrinkage was observed
The Effect of the Extrusion Method on Processing and Selected Properties of Poly(3-hydroxybutyric-co-3-hydroxyvaleric Acid)-Based Biocomposites with Flax and Hemp Fibers
The paper presents a comparative analysis of two extrusion methods of biocomposites with a poly(3-hydroxybutyrate-co-3-hydroxyvalerate acid) (PHBV) matrix filled with flax and hemp fibers in terms of biopolymer production, its processing in the further injection process, and an evaluation of the mechanical and functional properties of the products. Biocomposites containing 15% by weight of the filler were produced using single- and twin-screw extruders. The biocomposites were then processed by injection molding and then, among other things, the pressures in the mold cavity during processing were analyzed. The produced samples were tested by means of the following tests: uniaxial tensile strength, hardness, and impact tensile strength. The biocomposite’s microstructure was also analyzed using scanning electron microscopy (SEM), as were the shrinkage and water absorption of the manufactured products. In addition, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests were performed. It was found that the extrusion method changed significantly the geometry of the filler fibers and the processing capabilities of the manufactured materials. Significant differences in the mechanical and functional properties of the obtained biocomposite products were also found. On their basis, the advantages and disadvantages of both extrusion methods were discussed. Most of the obtained properties of injection products indicate the choice of single-screw extrusion. The products were characterized by slightly better mechanical properties and lower processing shrinkage. In turn, composites obtained by the screw method were characterized by lower water absorption and lower viscosity of the composite during injection molding
The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mechanical Properties and Quality of Molded Pieces
This work is inspired by the current European policies that aim to reduce plastic waste. This is especially true of the packaging industry. The biocomposites developed in the work belong to the group of environmentally friendly plastics that can reduce the increasing costs of environmental fees in the future. Three types of short fibers (flax, hemp and wood) with a length of 1 mm each were selected as fillers (30% mass content in PHBV). The biocomposites were extruded and then processed by the injection molding process with the same technical parameters. The samples obtained in this way were tested for mechanical properties and quality of the molded pieces. A significant improvement of some mechanical properties of biocomposites containing hemp and flax fibers and quality of molded pieces was obtained in comparison with pure PHBV. Only in the case of wood–PHBV biocomposites was no significant improvement of properties obtained compared to biocomposites with other fillers used in this research. The use of natural fibers, in particular hemp fibers as a filler in the PHBV matrix, in most cases has a positive effect on improving the mechanical properties and quality of molded pieces. In addition, it should be remembered that the obtained biocomposites are of natural origin and are fully biodegradable, which are interesting and desirable properties that are a part of the current trend regarding the production and commercialization of modern biomaterials