11 research outputs found

    Premature mitotic entry induced by ATR inhibition potentiates olaparib inhibition-mediated genomic instability, inflammatory signaling, and cytotoxicity in BRCA2-deficient cancer cells

    Get PDF
    Poly(ADP-ribose) polymerase (PARP) inhibitors are selectively cytotoxic in cancer cells with defects in homologous recombination (HR) (e.g., due to BRCA1/2 mutations). However, not all HR-deficient tumors efficiently respond to PARP inhibition and often acquire resistance. It is therefore important to uncover how PARP inhibitors induce cytotoxicity and develop combination strategies to potentiate PARP inhibitor efficacy in HR-deficient tumors. In this study, we found that forced mitotic entry upon ATR inhibition potentiates cytotoxic effects of PARP inhibition using olaparib in BRCA2-depleted and Brca2 knockout cancer cell line models. Single DNA fiber analysis showed that ATR inhibition does not exacerbate replication fork degradation. Instead, we find ATR inhibitors accelerate mitotic entry, resulting in the formation of chromatin bridges and lagging chromosomes. Furthermore, using genome-wide single-cell sequencing, we show that ATR inhibition enhances genomic instability of olaparib-treated BRCA2-depleted cells. Inhibition of CDK1 to delay mitotic entry mitigated mitotic aberrancies and genomic instability upon ATR inhibition, underscoring the role of ATR in coordinating proper cell cycle timing in situations of DNA damage. Additionally, we show that olaparib treatment leads to increased numbers of micronuclei, which is accompanied by a cGAS/STING-associated inflammatory response in BRCA2-deficient cells. ATR inhibition further increased the numbers of cGAS-positive micronuclei and the extent of cytokine production in olaparib-treated BRCA2-deficient cancer cells. Altogether, we show that ATR inhibition induces premature mitotic entry and mediates synergistic cytotoxicity with PARP inhibition in HR-deficient cancer cells, which involves enhanced genomic instability and inflammatory signaling

    FIRRM/C1orf112 is synthetic lethal with PICH and mediates RAD51 dynamics

    Get PDF
    Joint DNA molecules are natural byproducts of DNA replication and repair. Persistent joint molecules give rise to ultrafine DNA bridges (UFBs) in mitosis, compromising sister chromatid separation. The DNA translocase PICH (ERCC6L) has a central role in UFB resolution. A genome-wide loss-of-function screen is performed to identify the genetic context of PICH dependency. In addition to genes involved in DNA condensation, centromere stability, and DNA-damage repair, we identify FIGNL1-interacting regulator of recombination and mitosis (FIRRM), formerly known as C1orf112. We find that FIRRM interacts with and stabilizes the AAA + ATPase FIGNL1. Inactivation of either FIRRM or FIGNL1 results in UFB formation, prolonged accumulation of RAD51 at nuclear foci, and impaired replication fork dynamics and consequently impairs genome maintenance. Combined, our data suggest that inactivation of FIRRM and FIGNL1 dysregulates RAD51 dynamics at replication forks, resulting in persistent DNA lesions and a dependency on PICH to preserve cell viability. </p

    Analysis of 16,172 patient-derived tumor samples indicate TPX2 as being essential for survival of genomically instable cancer cells

    No full text
    Mutations in homologous recombination (HR) genes, including BRCA1 and BRCA2, compromise DNA repair and lead to genomic instability (GI). GI is lethal to normal cells but is a characteristic of many cancers. Apparently, these cancers are somehow re-wired to survive high levels of GI. Identification of the genetic alterations that allow viability of genomically instable tumor cells may uncover novel therapeutic targets. To elucidate how these tumor cells are rewired, we analyzed publically available mRNA expression data of 16,172 human cancer samples. Functional genomic mRNA profiling (FGmRNA-profiling) was applied on these samples to infer levels of GI and to capture the downstream effects of somatic copy number alterations on gene expression. A genome-wide association analysis was subsequently performed to assess the correlation between FGmRNA signals of individual genes with the degree of GI. From the top 250 genes with strong positive correlation with GI, 11 genes were prioritized based on a co-functionality network in which genes are co-regulated and share similar predicted biological function. The 11 genes that were identified in this cluster were: BIRC5, UBE2C, CENPA, CDCA3, DEK, SKP2, TPX2, KIF2C, RAD21, MYBL2 and WDR67. To validate these findings in genetically-defined models, we engineered a panel of 5 triple negative breast cancer (TNBC) cell lines with doxycycline-inducible shRNAs targeting BRCA2. BRCA2 depletion resulted in a failure of RAD51 foci to localize to DNA double strand breaks which generated isogenic cell line pairs proficient and deficient of HR repair. First, we depleted each of the identified 11 genes using RNA interference in BT-549 cells and observed that depletion of TPX2, a microtubule-associated protein, led to largest differential levels of cell death when comparing the BRCA2-deficient with the BRCA2-proficient context (86.6% vs 32.9% cell death in BRCA2-depleted vs controlled depleted cells respectively). Subsequently, we could replicate this decreased survival with TPX2 depletion in a BRCA2-deficient context in an additional 2 out of 4 other TNBC cell lines. Furthermore, we investigated whether BRCA2-depleted cells were also more sensitive to depletion of Aurora kinase A, a substrate of TPX2. For this purpose, mouse mammary tumor cell lines, derived from Tp53-/- or Brca2-/-;Tp53-/- mice, or a Brca2-reconstituted version thereof were treated with an Aurora A inhibitor, Alisertib. Again, we found that the BRCA2-deficient cell line was more sensitive to Aurora A inhibition than the two BRCA2-proficient cell lines. In conclusion, FGmRNA-profiling of mRNA expression data of human cancer samples identified TPX2 as an essential gene for survival of BRCA2-deficient breast cancer cells, when compared to BRCA2-proficient cells. Thus, targeting the TPX2/AURKA axis could potentially act as a novel therapeutic target in the treatment of genomically instable cancers

    Towards evidence-based pharmacotherapy in children

    No full text
    In daily practice, it is difficult to find a registered drug for children, because about 70% of the drugs prescribed in children are not studied, off-label or unlicensed in this age group. Clinical trials have usually been performed in adults, and then in daily practice dosages are adjusted for children without proper studies in that age group. In some countries, national formularies are being established to overcome the existing variance in prescribing between physicians. Complicating factors in finding the correct dosage for children include the heterogeneity between different age groups in the developmental stages of the organs influencing the absorption, distribution, metabolism, and excretion as well as differences in body composition during growth. Growth may also influence the effects and adverse effects of a drug used in a child. For oral administration of drugs in children, the bioavailability, the taste, the composition, and the absence of toxic ingredients for that age group are additional important factors. The EU has recently introduced legislation to stimulate the pharmaceutical industry to investigate the pharmacological effect and safety of new medicines in children. In response to this legislation, research networks are being established to provide the optimal infrastructure for pediatric drug investigation. The goals of this paper are to review the current problems in daily practice and to address the needs for evidence based pharmacotherapy in childre

    Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51

    No full text
    Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors

    Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51

    Get PDF
    Sister chromatid exchanges (SCEs) are products of joint DNA molecule resolution, and are considered to form through homologous recombination (HR). Indeed, SCE induction upon irradiation requires the canonical HR factors BRCA1, BRCA2 and RAD51. In contrast, replication-blocking agents, including PARP inhibitors, induce SCEs independently of BRCA1, BRCA2 and RAD51. PARP inhibitor-induced SCEs are enriched at difficult-to-replicate genomic regions, including common fragile sites (CFSs). PARP inhibitor-induced replication lesions are transmitted into mitosis, suggesting that SCEs can originate from mitotic processing of under-replicated DNA. Proteomics analysis reveals mitotic recruitment of DNA polymerase theta (POLQ) to synthetic DNA ends. POLQ inactivation results in reduced SCE numbers and severe chromosome fragmentation upon PARP inhibition in HR-deficient cells. Accordingly, analysis of CFSs in cancer genomes reveals frequent allelic deletions, flanked by signatures of POLQ-mediated repair. Combined, we show PARP inhibition generates under-replicated DNA, which is processed into SCEs during mitosis, independently of canonical HR factors

    TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells

    Get PDF
    Genomic instability is a hallmark feature of cancer cells, and can be caused by defective DNA repair, for instance due to inactivation of BRCA2. Paradoxically, loss of Brca2 in mice results in embryonic lethality, whereas cancer cells can tolerate BRCA2 loss. This holds true for multiple DNA repair genes, and suggests that cancer cells are molecularly "rewired" to cope with defective DNA repair and the resulting high levels of genomic instability. In this study, we aim to identify genes that genomically unstable cancer cells rely on for their survival. Using functional genomic mRNA (FGmRNA) profiling, 16,172 cancer samples were previously ranked based on their degree of genomic instability. We analyzed the top 250 genes that showed a positive correlation between FGmRNA levels and the degree of genomic instability, in a co-functionality network. Within this co-functionality network, a strong cluster of 11 cell cycle-related genes was identified, including TPX2. We then assessed the dependency on these 11 genes in the context of survival of genomically unstable cancer cells, induced by BRCA2 inactivation. Depletion of TPX2 or its associated kinase Aurora-A preferentially reduced cell viability in a panel of BRCA2-deficient cancer cells. In line with these findings, BRCA2-depleted and BRCA2-mutant human cell lines, or tumor cell lines derived from Brca2(-/-); p53(-/-) mice showed increased sensitivity to the Aurora-A kinase inhibitor alisertib, with delayed mitotic progression and frequent mitotic failure. Our findings reveal that BRCA2-deficient cancer cells show enhanced sensitivity to inactivation of TPX2 or its partner Aurora-A, which points at an actionable dependency of genomically unstable cancers
    corecore