116 research outputs found

    Less is more

    Get PDF

    Less is more

    Get PDF

    Training-induced Changes in the Dynamics of Attention as Reflected in Pupil Dilation

    Get PDF
    One of the major topics in attention literature is the attentional blink (AB), which demonstrates a limited ability to identify the second of two targets (T1 and T2) when presented in close temporal succession (200–500 msec). Given that the effect has been thought of as robust and resistant to training for over 2 decades, one of the most remarkable findings in recent years is that the AB can be eliminated after a 1-hr training with a color-salient T2. However, the underlying mechanism of the training effect as well as the AB itself is as of yet still poorly understood. To elucidate this training effect, we employed a refined version of our recently developed pupil dilation deconvolution method to track any training-induced changes in the amount and onset of attentional processing in response to target stimuli. Behaviorally, we replicated the original training effect with a color-salient T2. However, we showed that training without a salient target, but with a consistent short target interval, is already sufficient to attenuate the AB. Pupil deconvolution did not reveal any posttraining changes in T2-related dilation but instead an earlier onset of dilation around T1. Moreover, normalized pupil dilation was enhanced posttraining compared with pretraining. We conclude that the AB can be eliminated by training without a salient cue. Furthermore, our data point to the existence of temporal expectations at the time points of the trained targets posttraining. Therefore, we tentatively conclude that temporal expectations arise as a result of training

    Stepwise training supports strategic second-order theory of mind in turn-taking games

    Get PDF
    People model other people's mental states in order to understand and predict their behavior. Sometimes they model what others think about them as well: ``He thinks that I intend to stop.'' Such second-order theory of mind is needed to navigate some social situations, for example, to make optimal decisions in turn-taking games. Adults sometimes find this very difficult. Sometimes they make decisions that do not fit their predictions about the other player. However, the main bottleneck for decision makers is to take a second-order perspective required to make a correct opponent model. We report a methodical investigation into supporting factors that help adults do better. We presented subjects with two-player, three-turn games in which optimal decisions required second-order theory of mind (Hedden and Zhang, 2002). We applied three ``scaffolds'' that, theoretically, should facilitate second-order perspective-taking: 1) stepwise training, from simple one-person games to games requiring second-order theory of mind; 2) prompting subjects to predict the opponent's next decision before making their own decision; and 3) a realistic visual task representation. The performance of subjects in the eight resulting combinations shows that stepwise training, but not the other two scaffolds, improves subjects' second-order opponent models and thereby their own decisions

    Musical Minds:Attentional Blink Reveals Modality-Specific Restrictions

    Get PDF
    Formal musical training is known to have positive effects on attentional and executive functioning, processing speed, and working memory. Consequently, one may expect to find differences in the dynamics of temporal attention between musicians and non-musicians. Here we address the question whether that is indeed the case, and whether any beneficial effects of musical training on temporal attention are modality specific or generalize across sensory modalities.When two targets are presented in close temporal succession, most people fail to report the second target, a phenomenon known as the attentional blink (AB). We measured and compared AB magnitude for musicians and non-musicians using auditory or visually presented letters and digits. Relative to non-musicians, the auditory AB was both attenuated and delayed in musicians, whereas the visual AB was larger. Non-musicians with a large auditory AB tended to show a large visual AB. However, neither a positive nor negative correlation was found in musicians, suggesting that at least in musicians, attentional restrictions within each modality are completely separate.AB magnitude within one modality can generalize to another modality, but this turns out not to be the case for every individual. Formal musical training seems to have a domain-general, but modality-specific beneficial effect on selective attention. The results fit with the idea that a major source of attentional restriction as reflected in the AB lies in modality-specific, independent sensory systems rather than a central amodal system. The findings demonstrate that individual differences in AB magnitude can provide important information about the modular structure of human cognition
    corecore