9 research outputs found

    Morpho-Functional 1H-MRI of the Lung in COPD: Short-Term Test-Retest Reliability

    Get PDF
    Purpose Non-invasive end-points for interventional trials and tailored treatment regimes in chronic obstructive pulmonary disease (COPD) for monitoring regionally different manifestations of lung disease instead of global assessment of lung function with spirometry would be valuable. Proton nuclear magnetic resonance imaging (1H-MRI) allows for a radiation-free assessment of regional structure and function. The aim of this study was to evaluate the short-term reproducibility of a comprehensive morpho-functional lungMRI protocol in COPD. Materials and Methods 20 prospectively enrolled COPD patients (GOLD I-IV) underwent 1H-MRI of the lung at 1.5T on two consecutive days, including sequences for morphology, 4D contrast-enhanced perfusion, and respiratory mechanics. Image quality and COPD-related morphological and functional changes were evaluated in consensus by three chest radiologists using a dedicated MRI-based visual scoring system. Test-retest reliability was calculated per each individual lung lobe for the extent of large airway (bronchiectasis, wall thickening, mucus plugging) and small airway abnormalities (tree in bud, peripheral bronchiectasis, mucus plugging),consolidations, nodules, parenchymal defects and perfusion defects. The presence of tracheal narrowing, dystelectasis, pleural effusion, pulmonary trunk ectasia, right ventricular enlargement and, finally, motion patterns of diaphragma and chest wall were addressed. Results Median global scores [10(Q1:8.00;Q3:16.00) vs. 11(Q1:6.00;Q3:15.00)] as well as category subscores were similar between both timepoints, and kappa statistics indicated "almost perfect" global agreement (kappa = 0.86, 95% CI = 0.81-0.91). Most subscores showed at least "substantial" agreement of MRI1 and MRI2 (kappa = 0.64-1.00),whereas the agreement for the diagnosis of dystelectasis/effusion (kappa = 0.42, 95% CI = 0.00-0.93) was "moderate" and of tracheal abnormalities (kappa = 0.21, 95% CI = 0.00-0.75) "fair". Most MRI acquisitions showed at least diagnostic quality at MRI1 (276 of 278) and MRI2 (259 of 264). Conclusion Morpho-functional 1H-MRI can be obtained with reproducible image quality and high short-term test-retest reliability for COPD-related morphological and functional changes of the lung. This underlines its potential value for the monitoring of regional lung characteristics in COPD trials

    Echo Time-Dependent Observed Lung T-1 in Patients With Chronic Obstructive Pulmonary Disease in Correlation With Quantitative Imaging and Clinical Indices

    Get PDF
    Background There is a clinical need for imaging-derived biomarkers for the management of chronic obstructive pulmonary disease (COPD). Observed pulmonary T-1 (T-1(TE)) depends on the echo-time (TE) and reflects regional pulmonary function. Purpose To investigate the potential diagnostic value of T-1(TE) for the assessment of lung disease in COPD patients by determining correlations with clinical parameters and quantitative CT. Study Type Prospective non-randomized diagnostic study. Population Thirty COPD patients (67.7 +/- 6.6 years). Data from a previous study (15 healthy volunteers [26.2 +/- 3.9 years) were used as reference. Field Strength/Sequence Study participants were examined at 1.5 T using dynamic contrast-enhanced three-dimensional gradient echo keyhole perfusion sequence and a multi-echo inversion recovery two-dimensional UTE (ultra-short TE) sequence for T-1(TE) mapping at TE1-5 = 70 mu sec, 500 mu sec, 1200 mu sec, 1650 mu sec, and 2300 mu sec. Assessment Perfusion images were scored by three radiologists. T-1(TE) was automatically quantified. Computed tomography (CT) images were quantified in software (qCT). Clinical parameters including pulmonary function testing were also acquired. Statistical Tests Spearman rank correlation coefficients (rho) were calculated between T-1(TE) and perfusion scores, clinical parameters and qCT. A P-value -0.69) were found. Overall, correlations were strongest at TE2, weaker at TE1 and rarely significant at TE4-TE5. Data Conclusion In COPD patients, the increase of T-1(TE) with TE occurred at shorter TEs than previously found in healthy subjects. Together with the lack of correlation between T-1 and clinical parameters of disease at longer TEs, this suggests that T-1(TE) quantification in COPD patients requires shorter TEs. The TE-dependence of correlations implies that T-1(TE) mapping might be developed further to provide diagnostic information beyond T-1 at a single TE. Level of Evidence 2 Technical Efficacy Stage

    Quantification of pulmonary perfusion abnormalities using DCE-MRI in COPD: comparison with quantitative CT and pulmonary function

    Get PDF
    Objectives Pulmonary perfusion abnormalities are prevalent in patients with chronic obstructive pulmonary disease (COPD), are potentially reversible, and may be associated with emphysema development. Therefore, we aimed to evaluate the clinical meaningfulness of perfusion defects in percent (QDP) using DCE-MRI. Methods We investigated a subset of baseline DCE-MRIs, paired inspiratory/expiratory CTs, and pulmonary function testing (PFT) of 83 subjects (age = 65.7 +/- 9.0 years, patients-at-risk, and all GOLD groups) from one center of the COSYCONET COPD cohort. QDP was computed from DCE-MRI using an in-house developed quantification pipeline, including four different approaches: Otsu's method, k-means clustering, texture analysis, and 80(th) percentile threshold. QDP was compared with visual MRI perfusion scoring, CT parametric response mapping (PRM) indices of emphysema (PRMEmph) and functional small airway disease (PRMfSAD), and FEV1/FVC from PFT. Results All QDP approaches showed high correlations with the MRI perfusion score (r = 0.67 to 0.72, p < 0.001), with the highest association based on Otsu's method (r = 0.72, p < 0.001). QDP correlated significantly with all PRM indices (p < 0.001), with the strongest correlations with PRMEmph (r = 0.70 to 0.75, p < 0.001). QDP was distinctly higher than PRMEmph (mean difference = 35.85 to 40.40) and PRMfSAD (mean difference = 15.12 to 19.68), but in close agreement when combining both PRM indices (mean difference = 1.47 to 6.03) for all QDP approaches. QDP correlated moderately with FEV1/FVC (r = - 0.54 to - 0.41, p < 0.001). Conclusion QDP is associated with established markers of disease severity and the extent corresponds to the CT-derived combined extent of PRMEmph and PRMfSAD. We propose to use QDP based on Otsu's method for future clinical studies in COPD

    Towards quantitative perfusion MRI of the lung in COPD: The problem of short-term repeatability

    Get PDF
    Purpose 4D perfusion magnetic resonance imaging (MRI) with intravenous injection of contrast agent allows for a radiation-free assessment of regional lung function. It is therefore a valuable method to monitor response to treatment in patients with chronic obstructive pulmonary disease (COPD). This study was designed to evaluate its potential for monitoring short-term response to hyperoxia in COPD patients. Materials and methods 19 prospectively enrolled COPD patients (median age 66y) underwent paired dynamic contrast-enhanced 4D perfusion MRI within 35min, first breathing 100% oxygen (injection 1, O-2) and then room air (injection 2, RA), which was repeated on two consecutive days (day 1 and 2). Post-processing software was employed to calculate mean transit time (MTT), pulmonary blood volume (PBV) and pulmonary blood flow (PBF), based on the indicator dilution theory, for the automatically segmented whole lung and 12 regions of equal volume. Results Comparing O-2 with RA conditions, PBF and PBV were found to be significantly lower at O-2, consistently on both days (p<10-8). Comparing day 2 to day 1, MTT was shorter by 0.59 +/- 0.63 s (p<10-8), PBF was higher by 22 +/- 80 ml/min/100ml (p<3.10-4), and PBV tended to be lower by 0.2 +/- 7.2 ml/100ml (p = 0.159) at both, RA and O-2, conditions. Conclusion The second injection (RA) yielded higher PBF and PBV, which apparently contradicts the established hypothesis that hyperoxia increases lung perfusion. Quantification of 4D perfusion MRI by current software approaches may thus be limited by residual circulating contrast agent in the short-term and even the next day

    Design and application of an MR reference phantom for multicentre lung imaging trials

    Get PDF
    Introduction As there is an increasing number of multicentre lung imaging studies with MRI in patients, dedicated reference phantoms are required to allow for the assessment and comparison of image quality in multi-vendor and multi-centre environments. However, appropriate phantoms for this purpose are so far not available commercially. It was therefore the purpose of this project to design and apply a cost-effective and simple to use reference phantom which addresses the specific requirements for imaging the lungs with MRI. Methods The phantom was designed to simulate 4 compartments (lung, blood, muscle and fat) which reflect the specific conditions in proton-MRI of the chest. Multiple phantom instances were produced and measured at 15 sites using a contemporary proton-MRI protocol designed for an in vivo COPD study at intervals over the course of the study. Measures of signal- and contrast-to-noise ratio, as well as structure and edge depiction were extracted from conventionally acquired images using software written for this purpose. Results For the signal to noise ratio, low intra-scanner variability was found with 4.5% in the lung compartment, 4.0% for blood, 3.3% for muscle and 3.7% for fat. The inter-scanner variability was substantially higher, with 41%, 32%, 27% and 32% for the same order of compartments. In addition, measures of structure and edge depiction were found to both vary significantly among several scanner types and among scanners of the same model which were equipped with different gradient systems. Conclusion The described reference phantom reproducibly quantified image quality aspects and detected substantial inter-scanner variability in a typical pulmonary multicentre proton MRI study, while variability was greater in lung tissue compared to other tissue types. Accordingly, appropriate reference phantoms can help to detect bias in multicentre in vivo study results and could also be used to harmonize equipment or data

    CF Lung Disease - a German S3 Guideline: Module 2: Diagnostics and Treatment in Chronic Infection with Pseudomonas aeruginosa

    No full text
    Cystic Fibrosis (CF) is the most common autosomal-recessive genetic disease affecting approximately 8000 people in Germany. The disease is caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene leading to dysfunction of CFTR, a transmembrane chloride channel. This defect causes insufficient hydration of the epithelial lining fluid which leads to chronic inflammation of the airways. Recurrent infections of the airways as well as pulmonary exacerbations aggravate chronic inflammation, lead to pulmonary fibrosis and tissue destruction up to global respiratory insufficiency, which is responsible for the mortality in over 90% of patients. The main aim of pulmonary treatment in CF is to reduce pulmonary inflammation and chronic infection. Pseudomonas aeruginosa ( Pa ) is the most relevant pathogen in the course of CF lung disease. Colonization and chronic infection are leading to additional loss of pulmonary function. There are many possibilities to treat Pa -infection. This is a S3-clinical guideline which implements a definition for chronic Pa -infection and demonstrates evidence-based diagnostic methods and medical treatment for Pa -infection in order to give guidance for individual treatment options
    corecore