8 research outputs found

    Primary Staging of Prostate Cancer Patients with [18F]PSMA-1007 PET/CT Compared with [68Ga]Ga-PSMA-11 PET/CT

    Get PDF
    Background: Hybrid imaging with prostate-specific membrane antigen (PSMA) is gaining importance as an increasingly meaningful tool for prostate cancer (PC) diagnostics and as a guide for therapy decisions. This study aims to investigate and compare the performance of [18F]PSMA1007 (18F-PSMA) and [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography ( 68Ga-PSMA) in the initial staging of PC patients. Methods: The data of 88 biopsy-proven patients were retrospectively evaluated. PSMA-avid lesions were compared with the histopathologic Gleason Score (GS) for prostate biopsies, and the results were plotted by receiver operating characteristic (ROC)-curve. Optimal maximum standardized uptake value (SUVmax) cut-off values were rated using the Youden index. Results: 18F-PSMA was able to distinguish GS ≤ 7a from ≥7b with a sensitivity of 62%, specificity of 85%, positive predictive value (PPV) of 92%, and accuracy of 67% for a SUVmax of 8.95, whereas sensitivity was 54%, specificity 91%, PPV 93%, and accuracy 66% for 68Ga-PSMA (SUVmax 8.7). Conclusions: Both methods demonstrated a high concordance of detected PSMA-avid lesions with histopathologically proven PC. 18F-PSMA and 68Ga-PSMA are both suitable for the characterization of primary PC with a comparable correlation of PSMA-avid lesions with GS. Neither method showed a superior advantage. Our calculated SUVmax thresholds may represent valuable parameters in clinical use to distinguish clinically significant PC (csPC) from non-csPC

    Comparison of [18F]PSMA-1007 with [68Ga]Ga-PSMA-11 PET/CT in Restaging of Prostate Cancer Patients with PSA Relapse

    Get PDF
    This study aimed to compare the diagnostic performance of [18F]PSMA-1007 positron emission tomography/computed tomography (PET/CT) (18F-PSMA) and [68Ga]Ga-PSMA-11 PET/CT ( 68Ga-PSMA) by identifying prostate-specific antigen (PSA) threshold levels for optimal detecting recurrent prostate cancer (PC) and to compare both methods. Retrospectively, the study included 264 patients. The performances of 18F-PSMA and 68Ga-PSMA in relation to the pre-scan PSA were assessed by receiver operating characteristic (ROC) curve. 18F-PSMA showed PC-lesions in 87.5% (112/128 patients), while 68Ga-PSMA identified them in 88.9% (121/136). For 18F-PSMA biochemical recurrent (BCR) patients treated with radical prostatectomy (78/128, patient group: F-RP), a PSA of 1.08 ng/mL was found to be the optimal cut-off level for predicting positive and negative scans (AUC = 0.821; 95%, CI: 0.710–0.932), while for prostatectomized 68Ga-PSMA BCR-patients (89/136, patient group: Ga-RP), the cut-off was 1.84 ng/mL (AUC = 0.588; 95%, CI: 0.410–0.766). In patients with PSA < 1.08 ng/mL (F-RP) 76.3% and <1.84 ng/mL (Ga-RP) 78.6% scans were positive, whereas patients with PSA ≥ 1.08 ng/mL (F-RP) or 1.84 ng/mL (Ga-RP) had positive scan results in 100% and 91.5% (p < 0.001/p = 0.085). The identified PSA thresholds for PSMA-mappable PC lesions in BCR-patients (RP) showed a better separation for 18F-PSMA with regard to the distinguishing of positive and negative PC-lesions compared to 68Ga-PSMA. However, the two PSMA PET/CT tracers gave similar overall findings

    PSA and PSA Kinetics Thresholds for the Presence of 68Ga-PSMA-11 PET/CT-Detectable Lesions in Patients with Biochemical Recurrent Prostate Cancer

    Get PDF
    68Ga-PSMA-11 positron-emission tomography/computed tomography (PET/CT) is commonly used for restaging recurrent prostate cancer (PC) in European clinical practice. The goal of this study is to determine the optimum time for performing these PET/CT scans in a large cohort of patients by identifying the prostate-specific-antigen (PSA) and PSA kinetics thresholds for detecting and localizing recurrent PC. This retrospective analysis includes 581 patients with biochemical recurrence (BC) by definition. The performance of 68Ga-PSMA-11 PET/CT in relation to the PSA value at the scan time as well as PSA kinetics was assessed by the receiver-operating-characteristic-curve (ROC) generated by plotting sensitivity versus 1-specificity. Malignant prostatic lesions were identified in 77%. For patients that were treated with radical prostatectomy (RP) a PSA value of 1.24 ng/mL was found to be the optimal cutoff level for predicting positive and negative scans, while for patients previously treated with radiotherapy (RT) it was 5.75 ng/mL. In RP-patients with PSA value <1.24 ng/mL, 52% scans were positive, whereas patients with PSA ≥1.24 ng/mL had positive scan results in 87%. RT-patients with PSA <5.75 ng/mL had positive scans in 86% and for those with PSA ≥5.75 ng/mL 94% had positive scans. This study identifies the PSA and PSA kinetics threshold levels for the presence of 68Ga-PSMA-11 PET/CT-detectable PC-lesions in BC patients

    The Impact of 68Ga-PSMA PET/CT and PET/MRI on the Management of Prostate Cancer

    No full text
    Prostate-specific membrane antigen (PSMA) is a transmembrane protein with significantly increased expression in the cells and metastases of prostate carcinoma (CaP). PSMA-expression correlates with higher serum levels of prostatespecific antigen (PSA) and a higher Gleason score (GS). This finding has led to the development of novel imaging modalities such as 68Ga-/18F-labeled PSMA positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI). This article reviews the literature pertaining to various new imaging technologies for the management of CaP. PSMA positron emission tomography/computed tomography appears to be an excellent diagnostic tool, that may drastically impact the management of a large number of patients with primary and recurrent CaP. (C) 2019 Elsevier Inc

    Dual-Time Point [Ga-68]Ga-PSMA-11 PET/CT Hybrid Imaging for Staging and Restaging of Prostate Cancer

    No full text
    Simple Summary Early diagnosis and tumor characterization of prostate cancer (PCa) are important for accurate treatment. [Ga-68]Ga-PSMA-11 PET/CT turns out to constitute a major step toward improved diagnostic procedures to detect primary, recurrent, and metastatic PCa. The aim of our study is to evaluate the effect of a second imaging modality for the staging and restaging of PCa by possibly detecting additional PCa lesions due to the well-known increase of PSMA uptake over time. There was a significant increase in tracer uptake on delayed images in comparison to early [Ga-68]Ga-PSMA-11 PET/CT in our study, but the lesion positivity rate was comparable. However, in a few individual cases, additional delayed scans provided an information advantage in PCa lesion detection. The findings of our study are likely to be of major interest to clinicians as well as to researchers defining the algorithms that are necessary to implement this promising method with its specific tracer into clinical routine. Routine [Ga-68]Ga-PSMA-11 PET/CT (one hour post-injection) has been shown to accurately detect prostate cancer (PCa) lesions. The goal of this study is to evaluate the benefit of a dual-time point imaging modality for the staging and restaging of PCa patients. Biphasic [Ga-68]Ga-PSMA-11 PET/CT of 233 patients, who underwent early and late scans (one/three hours post-injection), were retrospectively studied. Tumor uptake and biphasic lesion detection for 215 biochemically recurrent patients previously treated for localized PCa (prostatectomized patients (P-P)/irradiated patients (P-I) and 18 patients suspected of having primary PCa (P-T) were separately evaluated. Late [Ga-68]Ga-PSMA-11 PET/CT imaging detected 554 PCa lesions in 114 P-P patients, 187 PCa lesions in 33 P-I patients, and 47 PCa lesions in 13 P-T patients. Most patients (106+32 P-P/P-I, 13 P-T) showed no additional PCa lesions. However, 11 PSMA-avid lesions were only detected in delayed images, and 33 lesions were confirmed as malignant by a SUVmax increase. The mean SUVmax of pelvic lymph node metastases was 25% higher (p < 0.001) comparing early and late PET/CT. High positivity rates from routine [Ga-68]Ga-PSMA-11 PET/CT for the staging and restaging of PCa patients were demonstrated. There was no decisive influence of additional late imaging with PCa lesion detection on therapeutic decisions. However, in a few individual cases, additional delayed scans provided an information advantage in PCa lesion detection due to higher tracer uptake and improved contrast

    Comparison of [18F]PSMA-1007 with [68Ga]Ga-PSMA-11 PET/CT in Restaging of Prostate Cancer Patients with PSA Relapse

    No full text
    This study aimed to compare the diagnostic performance of [18F]PSMA-1007 positron emission tomography/computed tomography (PET/CT) (18F-PSMA) and [68Ga]Ga-PSMA-11 PET/CT (68Ga-PSMA) by identifying prostate-specific antigen (PSA) threshold levels for optimal detecting recurrent prostate cancer (PC) and to compare both methods. Retrospectively, the study included 264 patients. The performances of 18F-PSMA and 68Ga-PSMA in relation to the pre-scan PSA were assessed by receiver operating characteristic (ROC) curve. 18F-PSMA showed PC-lesions in 87.5% (112/128 patients), while 68Ga-PSMA identified them in 88.9% (121/136). For 18F-PSMA biochemical recurrent (BCR) patients treated with radical prostatectomy (78/128, patient group: F-RP), a PSA of 1.08 ng/mL was found to be the optimal cut-off level for predicting positive and negative scans (AUC = 0.821; 95%, CI: 0.710&ndash;0.932), while for prostatectomized 68Ga-PSMA BCR-patients (89/136, patient group: Ga-RP), the cut-off was 1.84 ng/mL (AUC = 0.588; 95%, CI: 0.410&ndash;0.766). In patients with PSA &lt; 1.08 ng/mL (F-RP) 76.3% and &lt;1.84 ng/mL (Ga-RP) 78.6% scans were positive, whereas patients with PSA &ge; 1.08 ng/mL (F-RP) or 1.84 ng/mL (Ga-RP) had positive scan results in 100% and 91.5% (p &lt; 0.001/p = 0.085). The identified PSA thresholds for PSMA-mappable PC lesions in BCR-patients (RP) showed a better separation for 18F-PSMA with regard to the distinguishing of positive and negative PC-lesions compared to 68Ga-PSMA. However, the two PSMA PET/CT tracers gave similar overall findings

    Origin and evolution of the atmospheres of early Venus, Earth and Mars

    No full text
    corecore