13 research outputs found
Magnesium and <sup>54</sup>Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes
AbstractWe report on the petrology, magnesium isotopes and mass-independent 54Cr/52Cr compositions (μ54Cr) of 42 chondrules from CV (Vigarano and NWA 3118) and CR (NWA 6043, NWA 801 and LAP 02342) chondrites. All sampled chondrules are classified as type IA or type IAB, have low 27Al/24Mg ratios (0.04–0.27) and display little or no evidence for secondary alteration processes. The CV and CR chondrules show variable 25Mg/24Mg and 26Mg/24Mg values corresponding to a range of mass-dependent fractionation of ∼500ppm (parts per million) per atomic mass unit. This mass-dependent Mg isotope fractionation is interpreted as reflecting Mg isotope heterogeneity of the chondrule precursors and not the result of secondary alteration or volatility-controlled processes during chondrule formation. The CV and CR chondrule populations studied here are characterized by systematic deficits in the mass-independent component of 26Mg (μ26Mg∗) relative to the solar value defined by CI chondrites, which we interpret as reflecting formation from precursor material with a reduced initial abundance of 26Al compared to the canonical 26Al/27Al of ∼5×10−5. Model initial 26Al/27Al values of CV and CR chondrules vary from (1.5±4.0)×10−6 to (2.2±0.4)×10−5. The CV chondrules display significant μ54Cr variability, defining a range of compositions that is comparable to that observed for inner Solar System primitive and differentiated meteorites. In contrast, CR chondrites are characterized by a narrower range of μ54Cr values restricted to compositions typically observed for bulk carbonaceous chondrites. Collectively, these observations suggest that the CV chondrules formed from precursors that originated in various regions of the protoplanetary disk and were then transported to the accretion region of the CV parent asteroid whereas CR chondrule predominantly formed from precursor with carbonaceous chondrite-like μ54Cr signatures. The observed μ54Cr variability in chondrules from CV and CR chondrites suggest that the matrix and chondrules did not necessarily formed from the same reservoir. The coupled μ26Mg∗ and μ54Cr systematics of CR chondrules establishes that these objects formed from a thermally unprocessed and 26Al-poor source reservoir distinct from most inner Solar System asteroids and planetary bodies, possibly located beyond the orbits of the gas giants. In contrast, a large fraction of the CV chondrules plot on the inner Solar System correlation line, indicating that these objects predominantly formed from thermally-processed, 26Al-bearing precursor material akin to that of inner Solar System solids, asteroids and planets
Tungsten isotopes in bulk meteorites and their inclusions-Implications for processing of presolar components in the solar protoplanetary disk
We present high precision, low- and high-resolution tungsten isotope measurements of iron meteorites Cape York (IIIAB), Rhine Villa (IIIE), Bendego (IC), and the IVB iron meteorites Tlacotepec, Skookum, and Weaver Mountains, as well as CI chondrite Ivuna, a CV3 chondrite refractory inclusion (CAI BE), and terrestrial standards. Our high precision tungsten isotope data show that the distribution of the rare p-process nuclide (180)W is homogeneous among chondrites, iron meteorites, and the refractory inclusion. One exception to this pattern is the IVB iron meteorite group, which displays variable excesses relative to the terrestrial standard, possibly related to decay of rare (184)Os. Such anomalies are not the result of analytical artifacts and cannot be caused by sampling of a protoplanetary disk characterized by p-process isotope heterogeneity. In contrast, we find that (183)W is variable due to a nucleosynthetic s-process deficit/r-process excess among chondrites and iron meteorites. This variability supports the widespread nucleosynthetic s/r-process heterogeneity in the protoplanetary disk inferred from other isotope systems and we show that W and Ni isotope variability is correlated. Correlated isotope heterogeneity for elements of distinct nucleosynthetic origin ((183)W and (58)Ni) is best explained by thermal processing in the protoplanetary disk during which thermally labile carrier phases are unmixed by vaporization thereby imparting isotope anomalies on the residual processed reservoir
Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis
Chromatographic purification of chromium (Cr), which is required for high-precision isotope analysis, is complicated by the presence of multiple Cr-species with different effective charges in the acid digested sample aliquots. The differing ion exchange selectivity and sluggish reaction rates of these species can result in incomplete Cr recovery during chromatographic purification. Because of large mass-dependent inter-species isotope fractionation, incomplete recovery can affect the accuracy of high-precision Cr isotope analysis. Here, we demonstrate widely differing cation distribution coefficients of Cr(III)-species (Cr(3+), CrCl(2+) and CrCl(2)(+)) with equilibrium mass-dependent isotope fractionation spanning a range of ~1‰/amu and consistent with theory. The heaviest isotopes partition into Cr(3+), intermediates in CrCl(2+) and the lightest in CrCl(2)(+)/CrCl(3)°. Thus, for a typical reported loss of ~25% Cr (in the form of Cr(3+)) through chromatographic purification, this translates into 185 ppm/amu offset in the stable Cr isotope ratio of the residual sample. Depending on the validity of the mass-bias correction during isotope analysis, this further results in artificial mass-independent effects in the mass-bias corrected (53)Cr/(52)Cr (μ(53) Cr* of 5.2 ppm) and (54)Cr/(52)Cr (μ(54)Cr* of 13.5 ppm) components used to infer chronometric and nucleosynthetic information in meteorites. To mitigate these fractionation effects, we developed strategic chemical sample pre-treatment procedures that ensure high and reproducible Cr recovery. This is achieved either through 1) effective promotion of Cr(3+) by >5 days exposure to HNO(3) —H(2)O(2) solutions at room temperature, resulting in >~98% Cr recovery for most types of sample matrices tested using a cationic chromatographic retention strategy, or 2) formation of Cr(III)-Cl complexes through exposure to concentrated HCl at high temperature (>120 °C) for several hours, resulting in >97.5% Cr recovery using a chromatographic elution strategy that takes advantage of the slow reaction kinetics of de-chlorination of Cr in dilute HCl at room temperature. These procedures significantly improve cation chromatographic purification of Cr over previous methods and allow for high-purity Cr isotope analysis with a total recovery of >95%