10 research outputs found

    Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces

    Get PDF
    Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm−2 irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 102 μm2, an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution

    Green-to-Blue Triplet Fusion Upconversion Sensitized by Anisotropic CdSe Nanoplatelets

    No full text
    Green-to-blue photon upconversion bears great potential in photocatalytic applications. However, current hybrid inorganic-organic upconversion schemes utilizing spherical CdSe nanocrystals are often limited by energetic polydispersity, low quantum yields and an additional tunneling barrier resulting from the necessity of surface-passivating inorganic shells. In this contribution, we introduce anisotropic CdSe nanoplatelets as triplet sensitizers. Here, quantum confinement occurs in only one direction, erasing effects stemming from energetic polydispersity. We investigate the triplet energy transfer from the CdSe nanoplatelets to the surface-bound triplet acceptor 9-anthracene carboxylic acid. We further focus on the influence of nanoplatelet stacking and singlet back transfer on the observed upconversion efficiency. We obtain an upconversion quantum yield of 5.4% at a power density of 11 W/cm2­ using the annihilator 9,10-diphenylanthracene, and a low efficiency threshold Ith of 237 mW/cm2. </p

    Revisiting thin silicon for photovoltaics: a technoeconomic perspective

    No full text
    Crystalline silicon comprises 90% of the global photovoltaics (PV) market and has sustained a nearly 30% cumulative annual growth rate, yet comprises less than 2% of electricity capacity. To sustain this growth trajectory, continued cost and capital expenditure (capex) reductions are needed. Thinning the silicon wafer well below the industry-standard 160 μm, in principle reduces both manufacturing cost and capex, and accelerates economically-sustainable expansion of PV manufacturing. In this analysis piece, we explore two questions surrounding adoption of thin silicon wafers: (a) What are the market benefits of thin wafers? (b) What are the technological challenges to adopt thin wafers? In this analysis, we re-evaluate the benefits and challenges of thin Si for current and future PV modules using a comprehensive technoeconomic framework that couples device simulation, bottom-up cost modeling, and a sustainable cash-flow growth model. When adopting an advanced technology concept that features sufficiently good surface passivation, the comparable efficiencies are achievable for both 50 μm wafers and 160 μm ones. We then quantify the economic benefits for thin Si wafers in terms of poly-Si-to-module manufacturing capex, module cost, and levelized cost of electricity (LCOE) for utility PV systems. Particularly, LCOE favors thinner wafers for all investigated device architectures, and can potentially be reduced by more than 5% from the value of 160 μm wafers. With further improvements in module efficiency, an advanced device concept with 50 μm wafers could potentially reduce manufacturing capex by 48%, module cost by 28%, and LCOE by 24%. Furthermore, we apply a sustainable growth model to investigate PV deployment scenarios in 2030. It is found that the state-of-the-art industry concept could not achieve the climate targets even with very aggressive financial scenarios, therefore the capex reduction benefit of thin wafers is advantageous to facilitate faster PV adoption. Lastly, we discuss the remaining technological challenges and areas for innovation to enable high-yield manufacturing of high-efficiency PV modules with thin Si wafers.U.S. Department of Energy (DOE) (Award DE-EE0007535

    An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss

    No full text
    Stabilization of the crystal phase of inorganic/organic lead halide perovskites is critical for their high performance optoelectronic devices. However, due to the highly ionic nature of perovskite crystals, even phase stabilized polycrystalline perovskites can undergo undesirable phase transitions when exposed to a destabilizing environment. While various surface passivating agents have been developed to improve the device performance of perovskite solar cells, conventional deposition methods using a protic polar solvent, mainly isopropyl alcohol (IPA), results in a destabilization of the underlying perovskite layer and an undesirable degradation of device properties. We demonstrate the hidden role of IPA in surface treatments and develop a strategy in which the passivating agent is deposited without destabilizing the high quality perovskite underlayer. This strategy maximizes and stabilizes device performance by suppressing the formation of the perovskite δ-phase and amorphous phase during surface treatment, which is observed using conventional methods. Our strategy also effectively passivates surface and grain boundary defects, minimizing non-radiative recombination sites, and preventing carrier quenching at the perovskite interface. This results in an open-circuit-voltage loss of only ∼340 mV, a champion device with a power conversion efficiency of 23.4% from a reverse current–voltage scan, a device with a record certified stabilized PCE of 22.6%, and enhanced operational stability. In addition, our perovskite solar cell exhibits an electroluminescence external quantum efficiency up to 8.9%. ©2019Institute for Soldier Nanotechnology (Grant W911NF-13-D-0001)NASA (Grant NNX16AM70H)DOE Division of Materials Sciences and Engineering (Award DE-FG02-07ER46454)NSF (Grant CBET-1605495

    Solubility and Diffusivity

    No full text
    | openaire: EC/FP7/307315/EU//SOLARXLight-and elevated temperature-induced degradation (LeTID) is a detrimental effect observed under operating conditions in p-Type multicrystalline silicon (mc-Si) solar cells. In this contribution, we employ synchrotron-based techniques to study the dissolution of precipitates due to different firing processes at grain boundaries in LeTID-Affected mc-Si. The synchrotron measurements show clear dissolution of collocated metal precipitates during firing. We compare our observations with degradation behavior in the same wafers. The experimental results are complemented with process simulations to provide insight into the change in bulk point defect concentration due to firing. Several studies have proposed that LeTID is caused by metal-rich precipitate dissolution during contact firing, and we find that the solubility and diffusivity are promising screening metrics to identify metals that are compatible with this hypothesis. While slower and less soluble elements (e.g., Fe and Cr) are not compatible according to our simulations, the point defect concentrations of faster and more soluble elements (e.g., Cu and Ni) increase after a high-Temperature firing process, primarily due to emitter segregation rather than precipitate dissolution. These results are a useful complement to lifetime spectroscopy techniques, and can be used to evaluate additional candidates in the search for the root cause of LeTID.Peer reviewe
    corecore