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Photoresponse of supramolecular self-assembled
networks on graphene–diamond interfaces
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Nature employs self-assembly to fabricate the most complex molecularly precise machinery

known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to

spatially organize different building blocks relative to each other, enabling synthetic

molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-

monolayer molecular architecture approaching atomically defined spatial disposition of all

components. The active layer consists of a self-assembled terrylene-based dye, forming a

bicomponent supramolecular network with melamine. The assembly at the graphene-

diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can

be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and

open-circuit voltages of 270 mV employing 19 mWcm� 2 irradiation intensities at 710 nm.

With an ex situ calculated contact area of 9.9� 102 mm2, an incident photon to current

efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up

optoelectronic device fabrication with molecular resolution.
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E
lemental crystals, interfaces and (macro)molecules have
become integral parts of modern semiconductor devices
which are shaping twenty-first century technology. Thus far,

the first generation of organic semiconductor devices, for
example, light-emitting diodes1 and photovoltaics2, are
based on (macro)molecules processed with a wide range of
methods in an effort to make them compatible with the
capabilities of the semiconductor industry. These methods
consist mainly of thin film technologies, including spin-
coating3, sublimation1, printing4, crystallization5 and self-
assembly6–8 fabrication procedures or combinations thereof9.
However, the aforementioned strategies have been often centred
around the fabrication and the tuning of the properties of the
(macro) molecular active components in thin films10.
Consequently, spatial orientation of both the active layer’s
components and their interfaces are not usually known with
atomic precision. Thus, a posteriori characterization techniques
are required and the final absolute atomic-scale spatial
constitution of the device as a whole is rarely reproducible.
Although an atomically precise layout of the constituting
components is not always required for a device’s function, it
may be critical for its optimization11. For instance, sensitizing
interfaces with molecules was early recognized12 as efficient
means to photovoltaic charge generation. By optimizing the
sensitizer surface area, this strategy became technologically
viable13,14. Similarly, by improving chemical precision over
donor and acceptor polymers15, organic solar cell efficiencies
grew rapidly16. Thus, it is clear that for a transition to a second
generation of organic device engineering, their constituents must
be fabricated not only with high interfacial and chemical control
but also with exquisite spatio-temporal heteromolecular
precision, where the absolute location of different molecular
components is mastered and precisely known a priori. So far,
device elements approaching such molecular precision employ
single-molecule configurations17,18, which are not yet ready to be
implemented for large-area technological applications. One
strategy for large-area, artificial molecularly precise device
fabrication is to grow architectures from the bottom-up19, at
interfaces with solutions20 or under vacuum. Supramolecular
hydrogen bonded21,22, metal-organic23,24 or covalent25-27 multi-
component surface-confined networks provide a route to
precisely organize different building blocks relative to each
other in two dimensions (2D). These 2D surface assemblies can
be engineered28,29 with increasing level of prediction30,31 to
afford device functionalities ontop of specific substrates. In
addition, 2D networks can act as templates for the growth of
three-dimensional networks32,33, paving the road towards vertical
heteromolecular control via monolayer-by-monolayer growth.
Such architectures may present precise interpenetrated
morphologies34 with ideal nanoporous and columnar order,
which have long been considered optimal configurations for
organic solar cells11,35.

Here we demonstrate the photoresponse of a bicomponent
supramolecular network (Fig. 1a) on transparent, graphene-
passivated H-C(100) diamond (GHD) and employing a gallium
droplet as a counter electrode (Fig. 1b). The network is built with
a chromophore, consisting of a terrylene diimide (TDI) derivative
(1) and melamine (2). After initial molecular characterization
by means of scanning tunnelling microscopy, we show
generated photocurrents of (0.5±0.2) nA and photovoltages of
(270±120) mV at 19 mW cm� 2 irradiation intensities at
710 nm (uncertainties are s.d. in tenths of measurements for
different sample preparations). We find incident photon to
electron efficiencies (IPCE) at 710 nm of (0.6±0.25)% when
estimating the contact area ex situ, yielding photocurrent
densities of (47±5) mA cm� 2. Our work introduces bottom-up

supramolecular network engineering on 2D materials for
molecularly precise function with atomically defined interfaces.

Results
Chemical design and synthesis. Heteromolecular recognition
between tritopic melamine and complementary ditopic linkers via
hydrogen bond formation was introduced as means to achieve
hexagonal supramolecular architectures21,36. By proper chemical
design, the complementary linker can be engineered31,37 for
self-assembly with increasing level of predictability at the
solid–liquid interface, thereby decreasing the content of poorly
ordered and glassy phases. For instance, we have previously
shown that peripheral substitution of the linker favours the
formation of networks over tightly packed patterns22. Further, the
linker can be imbued with functional properties. Rylene dyes are
poly(peri-naphthalene)s38 that show a high photostability39,
which make them preferred constituents for application in
optoelectronic devices. Extending the p-system of the dye
allows for tuning the optical properties and thus, shifting the
absorption maximum to higher wavelengths. At the same time,
rylenes are known to be amongst the most efficient organic
absorbers38,40. Thus, rylenes are promising for the infrared
regime with high transparency in the visible spectrum, for use in
the next generation of facade and window building technology41.
By introducing diimide terminations, the molecules acquire the
supramolecular moiety necessary for triple hydrogen bond
complementary recognition with the melamine cornerstone.
Substituents at the bay position are used to improve the
solubility38 and favour porous network formation. Thus a novel
TDI, bearing NH groups in the imide structure, is synthesized
according to Fig. 2 (see Supplementary Methods for details). The
presence of NH groups makes the solubility poor and purification
of the rylene dyes rather difficult. Therefore, we use bulky
2,6-diisopropylphenyl groups in the starting one-pot reaction of
perylene monoimide 3 and naphthalene monoimide 4 to create
the soluble compound 5. After bromination and phenoxylation
steps, tetra(t-octylphenoxy) substituted 7, showing outstanding
solubility42, can be used in the following. Hydrolysis of the imide
groups under basic conditions, results in bis-anhydride 8 which is
reacted with ammonium acetate to afford the target 1. In both
cases the presence of four voluminous t-octylphenoxy groups
made purification and processing possible. Comparing
with soluble perylene diimide (PDI) analogues, TDIs have
higher absorption coefficients, which render TDI a better light-
harvesting efficiency43. Moreover, the additional naphthalene
unit in the TDI structure separates the tetraphenoxy groups and
makes the TDI molecules less twisted44. Thus, improved planarity
and increased absorptivity38,40 render the engineered TDI
supramolecular assemblies advantageous over shorter PDI
assemblies21,45.

Scanning tunnelling microscopy characterization. The
successful formation of highly regular 2D supramolecular
networks between 1 and 2 has been investigated ex situ
(on a model substrate) and in situ (in the device configuration)
by means of scanning tunnelling microscopy. Self-assembly
experiments involved applying a mixture of 1þ 2 in 1,2,4-tri-
chlorobenzene (TCB) with 1–5% of dimethylsulfoxide (DMSO),
first on highly ordered pyrolytic graphite (HOPG, Fig. 3a,c) and
then on transparent platforms made by graphene transferred to
hydrogenated H-C(100) diamond (GHD). In the scanning tun-
nelling microscope (STM) images, molecular features can be
resolved. Figure 3a shows how the observed hexagonal supra-
molecular features perfectly match the expected chemical struc-
ture in Fig. 3b. The molecular geometry was optimized with the
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MMFF molecular force field. The 2D fast Fourier transform in
Fig. 3c provides evidence for the regularity in the monolayer
supported on HOPG. At GHD, only nanocrystalline hexagonal
domains with sizes of tens of nanometres are monitored (Fig. 3d).
Defects and impurities on GHD make the extended growth of
crystalline bicomponent networks challenging, as discussed
below. The experimental unit cell parameters for the network
formation on GHD amount to a¼ (3.9±0.2) nm and
b¼ (4.0±0.2) nm and a,b¼ 62±1�, which are in perfect agree-
ment with the values measured on HOPG.

UV–visible measurements. With an atomically flat and trans-
parent platform such as GHD, capable of supporting the bimo-
lecular 2D self-assembly, optical spectral properties of crystalline
supramolecular layers can now be investigated. Thus, UV–vis
absorption measurements were performed to distinguish between
changes in the spectrum of 1 upon hydrogen bond recognition
with 2. The absorption spectra of (5±1) ml of the pristine 1 in a
12 mM TCB solution and the pure TCB solvent on the diamond
supported graphene surface are shown in Fig. 4a. Two distinct
absorption peaks at 665 and 735 nm can be distinguished. This
corresponds to a bathochromic shift of 46 and 66 nm with respect
to UV–vis measurements in solution (Supplementary Fig. 1).
Note that the TCB solvent used for the drop-casting shows no
absorption in that wavelength range. The absorption peak-to-
baseline signal of 1, 0.012 at (735±2) nm (see Supplementary

Fig. 1 for absolute absorption units), is indicative of approxi-
mately a monolayer of 1 when compared with the absorbance of
monolayer perylene tetracarboxylic anhydride on graphene46,
B0.007 at 702 nm. The molar attenuation coefficient of perylene
tetracarboxylic anhydrides and PDIs47 of B5� 104 M� 1 cm� 1

is half the one of analogue TDI derivatives48, close to
1� 105 M� 1 cm� 1, at the respective absorbance maxima.
When (5±1) ml solutions of 1 and 2 with a concentration ratio
of 12mM:8 mM are applied to the sample, a fivefold reduction of
the signal of 1 is observed along with a bathochromic shift of the
absorbance maximum to (740±5) nm (Fig. 4b, uncertainties are
s.d. between four different preparations). At least a 1.5-fold
reduction in the absorbance is expected when comparing the
molecular density of molecules of 1 (0.31 nm� 1) with that of
molecules of 1 in the 1þ 2 network (0.21 nm� 1). Incidentally, a
fourfold reduction of the absorbance maximum is also prominent
in p-stacks of perylenes49, in part due to specific surface
reduction50,51. Because the reduction of the absorbance is not
an effect of variations in the drop-cast solution volume or
concentration (see Supplementary Fig. 1), we suggest it is the
combined effect of a looser packing (increased unit cell) of 1þ 2
and its aforementioned p-stacking33.

Photoresponse characteristics. To preserve pristine molecular
interfaces aiming at molecular precision, a gallium droplet has
been used to soft-contact the supramolecular network. Current–
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voltage (IV) measurements have been used to characterize the
device element’s photoresponse. The top contact was fabricated
by letting a liquid gallium droplet cover a blunt tungsten tip and
slowly cool at room temperature (Fig. 5a). Gallium alloys have
been widely used as a replacement for mercury for creating
macroscopic device contacts with molecular layers52,53. Our
strategy consists of approaching the gallium-coated tip to the
substrate and stabilizing it to a current setpoint of 2 nA at
100 mV, with the help of a modified STM. Contact and wetting of
the GHD substrate by the gallium was inferred by fluorescence
spectroscopy (see Methods and Supplementary Fig. 2) and by
measuring the current during approach of the electrode to the
surface (Supplementary Fig. 3). In addition, stepwise increase of
the setpoint current shows stable semiconductor characteristics
up to 100 nA (Supplementary Fig. 4). The large-area IV
measurements were performed on the 1þ 2 on GHD and bare
GHD substrates. The IV spectra of GHD (Fig. 5c, black dotted
line) and 1þ 2 on GHD (Fig. 5c, blue dotted line) were recorded
with a forward sweep of 200 mV s� 1. For obtaining the
photoresponse characteristics, the current was recorded under
illumination by a red light-emitting diode (LED) (l¼ 710 nm)
with a measured power of 19 mW cm� 2. When bare GHD was
employed, no photoresponse was observed (Fig. 5c, black line).
Conversely, the illuminated IV curve of the 12 mM:8 mM 1þ 2 on
GHD monolayer photoresponse exhibits characteristic features
(Fig. 5c, red line). Under illumination, a finite current flows at

zero bias voltage, the short-circuit current ISC. An average short-
circuit current of ISC¼ (0.5±0.2) nA and open-circuit voltage of
Voc¼ (270±120) mV were measured by illuminating the system
with monochromatic light of 710 nm. Typical maximum and
minimum values, from the average photoresponse characteristic,
are also shown as shaded areas in Fig. 5c. In addition, IV curves
were recorded by illuminating the 1þ 2 network on graphene
with monochromatic light of 520 nm of 13 mW cm� 2 (Fig. 5d),
where 1 does not absorb light. Indeed, no photocurrent was
generated under 520 nm light irradiation conditions where TDI
does not absorb. Figure 5e,f depict the back illumination
geometries employed. Figure 5g shows the stability of the
photovoltage generated by the junctions as a function of light
on–off cycles (employing functionalized gallium tips, see
Methods). The data corresponds to B25% of various measured
junctions. In the remaining junctions, a different regime is
observed, where a clear increase in the current with 710 nm
irradiation occurs but neither open-circuit voltage nor short-
circuit current are detected (Fig. 5h). Because current-distance
spectroscopy reveals a clear exponential dependence of the
current with the distance, these junctions do not physically
contact the substrate. Hence, this non-contact regime is attributed
to a photoexcitation effect, where additional tunnelling channels
are opened upon light exposure. All in all the results show that
the supramolecular network based on 1þ 2 molecules specifically
generates a photoresponse at the designated wavelength. It is
instructive to approximate the tunnelling contact area of
the gallium droplet (B250mm diameter) to estimate
photoconversion efficiencies. By ex situ contact junctions with
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Figure 3 | STM images showing the assembly of 1þ 2 on graphite and

graphene-passivated H-C(100) diamond substrates. (a) STM constant

current image of 1þ 2 (16 mM: 10mM) and underlying HOPG interface.

Scale bar, 2 nm (b). Molecular model minimized by the MMFF force field,

the hexagonal size corresponding to the theoretical unit cell is

a¼ b¼4.2 nm and the pore diameter is d¼4.6 nm. Scale bar, 2 nm (c).

STM large-area constant height image (12mM:8mM). (inset) 2D fast

Fourier transform showing the high crystallinity of the assembly on HOPG.

Unit cell a¼ (4.1±0.2) nm, b¼ (4.3±0.2) nm and a,b¼65±2� Scale bar

20 nm (d). Gaussian-filtered STM constant current image of 1þ2 on GHD.

Unit cell a¼ (3.9±0.2) nm and b¼ (4.0±0.2) nm and a,b¼62±2�. Area

13.8 nm2. Tunneling parameters: average tunneling current (It)¼ 20 pA,

sample voltage (Vt)¼ 300 mV. Scale bar, 5.5 nm.
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insulating fluorescence dyes (see Methods and Supplementary
Fig. 2), an area of (9.9±0.6)� 102 mm2 can be estimated for the
in situ experiment. This area is roughly 2% of the projected area
under the gallium electrode (49� 103 mm2, using a radius of
125mm). With such estimation, current densities of
10� 4 A cm� 2 at 0.5 V can be derived from the IV spectra.
These current densities are comparable to those reported by
contacting -S-C16H33 self-assembled monolayers-metal interfaces
of similar contact areas53, indicating a soft-contact. Further, with
the derived photocurrent density of JSC¼ (47±5) mA cm� 2 a
monochromatic IPCE of (0.6±0.25)% can be estimated at
710 nm, 19 mW cm� 2 irradiation intensities.

Discussion
We have fabricated surface-confined bicomponent assemblies on
GHD based on a functional dye38 absorbing at 740 nm. The
active layer ideally consists of a self-assembled TDI-based
supramolecular nanoporous network exhibiting nanocrystalline
hexagonal order. Shorter diimide-based molecules like
naphtalenes have been found to stack in the third dimension

through van der Waals face-to-face stacking33. Thus, the
employed system presents an avenue towards molecularly
precise three-dimensional devices. During the measurements,
atomically flat and transparent all-carbon GHD served as the
photoanode, while a gallium junction was used as top cathode
electrode, respectively. For sake of maintaining molecular
integrity at the interface, as observed by STM in Fig. 3, a soft
gallium electrode is used as a contact. The photoresponse
exhibited a three order of magnitude increase in the short-
circuit current, (0.5±0.2) nA, with respect to the dark current
(Supplementary Fig. 5) and an open-circuit voltage of
(270±120) mV. It is worth mentioning that average short-
circuit current and open-circuit voltage for the single component
1 were measured as (0.09±0.01) nA and (160±60) mV,
respectively. The reported open-circuit voltage values are close
to the energy level difference between the highest occupied
molecular orbital (HOMO) of 1 and the work function of
graphene. The electrode work function is 4.5 eV (ref. 54) for
graphene and 4.3 eV (ref. 55) for gallium. The calculated first
excitation of 1 occurs at 1.6 eV (775 nm) and the HOMO of 1 is
4.8 eV below the vacuum level (Supplementary Fig. 6). The
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correlation with the energy level difference might be coincidental,
as the origins of the open-circuit voltage in excitonic solar cells
are under intense discussion56. In our setup, a full molecular
monolayer is guaranteed by employing concentrations and
volumes, equivalent to 3.8� 1013 molecules of 1 per substrate
(and similar amount for 2). Considering a substrate area of
5� 5 mm2 and three TDI molecules per 1þ 2 unit cell area of
13.8 nm2, a monolayer is formed with 5.4� 1012 TDI molecules.
The higher amount of molecules applied to the substrate was
employed to compensate for ring stain effects when drying
drop-casting solutions (see Supplementary Fig. 1). A peak UV–
vis absorbance of 0.012 at (735±2) nm for 1 provides additional
evidence of a molecular monolayer. Upon 1þ 2 supramolecular
network formation, absorbance is reduced, as expected because
the assembly of a porous architecture entails a lower molecular
surface density. In addition, formation of p-aggregate
layers49,50, reduces the resulting absorbance cross section, as
well as hydrogen bonding57 where charge transfer is likely to
occur58.

Our estimate on the tunnelling contact area allows us to
elaborate on the technological implications of photoresponsive
surface assemblies. Previously reported optimized photovoltaic
devices of thin films of precursor molecule 7 blended with an
organic acceptor59, featured IPCEs35 of 0.3% at 700 nm. These
thin films were prepared by spin-coating solutions of
13 mg ml� 1. The comparable estimate of an IPCE of
(0.6±0.25)% at 710 nm for our system prepared by drop-
casting a 5 ml of a solution 1,000 times more diluted
(0.015 mg ml� 1 or approximately 12mM) suggests that the
photovoltaic response of few monolayers of self-assembled
molecular architectures could outperform the response of bulk
spin-coated materials. This is in part due to high internal
quantum yields for monolayer absorbers or high collection
efficiencies at interfaces, as reported for C60-porphyrin mixed
self-assembled dyads60, natural photosystem-I18,61 and naturally
occurring 2D crystals62,63. In our configuration, two molecular
interfaces are formed, one between 1þ 2 on GHD and one
between 1þ 2 and gallium oxide on gallium. The oxide64

tunnelling barrier between gallium and the supramolecular
assembly forms a blocking-layer that prevents the efficient
collection of photogenerated electrons at the gallium electrode.
We suggest that the resulting photoresponsive device element is
hole-only, that is, photogenerated holes are readily collected at
the graphene photoanode, while electrons have to tunnel to the
gallium electrode. Hence, it is expected that the tuning of the
work function and of the appropriate tunnelling junction material
(for example, allowing hole-only and electron-only transport in
the pertinent contacts)65 will radically improve the efficiency of
monolayer-thin organic devices.

In summary, bottom-up modular self-assembled networks and
2D materials grant access to device fabrication with molecular
precision. We have shown the first macroscopic (mm scale)
photoresponse characterization of a bicomponent supramolecular
interfacial assembly. By ex situ estimations of the tunnelling area,
our non-optimized device element configuration yields an IPCE (at
710 nm) as high as 0.6% in air, opening novel avenues towards
tandem photovoltaics from monolayer-thin sensitizers. More
importantly, we highlighted how, more than a decade since the
introduction of interfacial bottom-up modular self-assembly21,23,24

and in situ on-surface synthesis25 for atomically precise fabrication,
serious efforts are still required for molecularly precise device
fabrication, with high throughput, large-area, dedicated analytical
methods simply lacking. Our work motivates rapid progress in
molecular engineered manufacturing and monolayer-by-
monolayer molecular printing methods, which potentially grant
access to exponential optimization of device performance.

Methods
CVD-grown graphene transfer and network formation. The experiments were
performed under ambient conditions on CVD-grown graphene (10� 10 mm on a
copper foil, Graphene Platform, Japan) on hydrogenated diamond (Element Six,
thickness: 500 mm) surface. A high purity diamond C-(100) plate was cleaned with
pure N-methyl-2-pyrrolidone (NMP) and isopropanol sonication treatment.
Oxidation of the substrate was conducted with oxygen microwave plasma (TePla
100-E): 600 s at 200 W load coil power and 50 Pa oxygen pressure at a constant
oxygen flow rate equivalent to 90 cm3 min� 1 (SCCM). To ensure a high quality
conductive termination, hydrogenation of the diamond surface was performed in a
quartz tube reactor (Seki Technotron Corp.) of a microwave-coupled ASTEX
plasma system with three steps: 750 W and 50 mbar hydrogen pressure at a
constant hydrogen flow rate of 100 SCCM at 700 �C for 15 min; 230 W, 10 mbar
hydrogen pressure, 100 SCCM at 300 �C for 10 min; 0 W, 10 mbar hydrogen
pressure, 100 SCCM at 35 �C for 30 min. The hydrogenated diamond was
characterized via STM (Supplementary Fig. 7). After these treatments, the graphene
layer was transferred66,67 on diamond H-C(100). Melamine (Fluka, 52549, 99%)
was used as received. Dimethyl sulfoxide (DMSO, Sigma-Aldrich, 99.9%) and
anhydrous 1,2,4-trichlorobenzene (TCB, Sigma-Aldrich, 99.9%) were used as
solvents without further purification. Uncertainty values were derived from the
standard deviation of the balance’s linearity (Sartorius CPA2245). The mother
solutions in 10% DMSO and 90% in TCB were sonicated and heated to 80 �C and a
dilution was prepared in TCB with a concentration ratio of 1þ 2 of 12 mM:8 mM.
The network was obtained by drop-casting (5±1)ml of 1þ 2 on GHD.

Scanning tunnelling microscopy measurements. STM measurements (Agilent
Technologies 5,100) were performed in constant current and constant height
mode. The scanning tips were prepared by mechanically cutting a Pt/Ir wire
(80:20%, Goodfellow, UK). STM data were analysed with the free WSxM software
(Nanotec Electronica S.L., Spain) and the Gwyddion software68. All images, except
Fig. 3c with Gaussian filtering, are shown with line-wise flattening to remove tilting
effect of the substrate plane. The network structures were modelled by the Merck
modular force field (MMFF)69. Supplementary Fig. 8 reports the STM data of the
molecule of 1 in HOPG.

UV–visible absorption spectroscopy. UV–vis measurements were performed
with a UV/VIS/NIR Spectrometer, Lambda 900 (Perkin Elmer). The spectra were
recorded at the full spectra range (2,000–200 nm) with 5 nm data interval, 0.32
and 0.68 s integration time for UV–vis and NIR, respectively. For absorption
measurements, (5±1) ml of 1þ 2 (12 mM:8 mM) in 1,2,4-Trichlorobenzene
(TCB, Sigma-Aldrich, 99.9%) were drop-casted on GHD and dried in air. The
spectrum was averaged 10 times and is plotted versus the wavelength for each
sample.

Photoresponse measurements. IV measurements were performed with a home-
built STM described in detail elsewhere70. A blunt tungsten tip was dipped into a
heated gallium droplet and directly mounted into the tip holder of the scanner. The
gallium electrode was approached to the surface with approach parameters of 2 nA
and 100 mV. The spectroscopy data were recorded with a forward sweep rate of
200 mV s� 1 using a Femto pre-amplifier. For recording the on–off cycle
photovoltages in Fig. 5g, EGaIn electrodes coated with alkyl thiols were employed
for increased stability. The tungsten blunt tips were dipped in EGaIn (495425,
Sigma-Aldrich) until a smooth coating was obtained and subsequently immersed in
a pure solution of 1-dodecanethiol (471364, Sigma-Aldrich) for 15 min. These IV
measurements were independently performed in an Agilent Technologies 5,100
using a logarithmic current amplifier to avoid current saturation. Before each single
tunnelling spectroscopy measurement, the feedback vertical position of the
electrode was regulated again to a tunnelling current of 1 nA and a voltage of
300 mV and turned off. The data were recorded with a forward sweep rate of
20 mV s� 1. For the illumination, a 710 nm (30 mW, 18�, Roithner Lasertechnik,
Austria) and 520 nm (9,600 mCd, 123 mW, 30�, Nichia, Japan) LED were used. The
photovoltaic detection limit of our setup is 90 mV, calculated as trice the standard
deviation of the dark voltage. The acquired data in Fig. 5c,d,g corresponds to stable
contact junctions (no observable oscillations in the junction z axis piezo electric
control nor identifiable non-contact tunnelling junction formation, see main text)
among tenths of different area surveys on four different samples.

Fluorescence measurement of the Ga droplet contact area. A Ga droplet was
prepared as employed for the photocurrent measurements. The droplet was
brought into tunnelling contact with a thin film of fluorescent dye on HOPG
surface with the same approach and current parameters used in the STM
measurement. By employing a nm-thick film of an insulating dye Rhodamin B
(Radiant Dyes, Wermelskirchen), a contact junction forms, implying physical
contact with the monolayer. The physical contact of the gallium droplet with a
thick film of Rhodamin B leads to a higher deformation the droplet, increasing the
contact area in comparison to the photoresponse contacts. Therefore, this method
accurately estimates an upper bound to the actual device element contact area and
therefore, a minimum current density and efficiency. To form the nm-thick film,
HOPG was spin-coated (480 r.p.m.) three times with 10 ml of a saturated solution of
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Rhodamin B in acetone, and dried between each application. The tip was retracted
from the surface, fixed to a microscope slide and imaged under fluorescence
conditions with a fluorescence microscope (Leica DMI 3000B, Wetzlar). The image
of the tip is shown in Supplementary Fig. 2 with enhanced contrast to make the
contour of the tip visible (darker area). From the raw data (greyscale TIFF-image),
the number of pixels with brightness higher than a certain threshold was extracted.
From the length scale per pixel (known from calibration), the total area
corresponding to the pixels was calculated. The threshold was set to a clear gap
between brighter and darker pixels in the histogram and the corresponding area in
the image was identified.
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